Programme schedule of short term course on

Computer Aided Engineering: Applied CFD and FEM

9-15 October 2016

College of Engineering, Pallipuram, Alleppey Dist., Kerala

Day↓ Time→	9.30-10.00		10.00-11.00		11.30-1.00		2.00-3.00	3.00-4.00		4.10-5.00	5.00-5.30
DAV 1.	Registration		Inauguration		Introduction		CFD theory	Scaling laws		Scaling laws for internal & external flows	
Sunday (9 th Oct)				Computer Aided Engineering (CAE): FEM, CFD		Differential equations and concept of boundary layer	Rules for scaling analysis of differential equations		Order of magnitude method		
	Review of overnight assignment		Meshing strategies		Meshing strategies	L U N C H	Concept of internal a	nd external flows		How to decide?	
DAY 2: Monday (10 th Oct)			Geometric features and pre-processing techniques for CAE	T E A	Mesh refinement, quality checks and improvements		Fluid and solid volume extraction techniques	Boundary layer mesh generation techniques	T E A	2D or 3D CFD: How and why?	
DAY 3: Tuesday (11 th Oct)	Reverse Engineering 1: Why and how with CAE				Reverse Engineering 2: Geometry from Mesh		Automotive/ Aerospace	Turbomachinery application		Concept of interface modelling	Overnight assignments
	Review of overnig ht assignm ent	3D, Tetra Meshing, face extraction	Reverse Engineering		Raw scanned data to perfect feature based geometry		Wind tunnel CFD technique	From 3D to 2D blade aerodynamic design and CFD model		Conjugate heat transfer modelling techniques	
DAY 4: Wednesd ay (12 th October)	Finite Element Method (FEM)		FEM Theory		Weak (Variational) form type method		Fluid Structure In	acture Interaction (FSI)		FSI	
	Introduction		Subdomain, Galerkin, Petrov-Galerkin, Least square, Collocation		Rayleigh-Ritz Method, Global matrix		Background and applications	Case studies on FSI		Coupling Finite Volume Method (FVM) and Finite Element Method (FEM)	

Day↓ Time→	9.30-10.00	10.00-11.00		11.30-1.00		2.00-3.00	3.00-4.00		4.15-5.00	5.00-5.30
	Design for vibration and thermal			Design for vibration 1: Dynamic response	Design for vibration 2: Harmonic response	FEM vs. FVM		FEM vs. FVM		
DAY 5: Thursday (13 th Oct)	Review of overnight assignment	Industry case study: a multidisciplinary problem		Structural design based on natural dynamic response		Structural design based on forced harmonic response	Finite Volume Method for CFD and FEM problems		Solving same structural problem using FEM and FVM: Which gives better result?	
	How to shoot 2D still images?			2D Image-based 3D modelling	Stresses in critical region			How to decide?		
DAY 6: Friday (14 th Oct)	Review of overnight assignments	Best practices for taking still images	T E A	Handling geometry, data loss, Developing CFD/FEM models, Project to participants	U N C H	Solution strategies: Quad, tria or higher order element?	Abrupt geometry: plate with a hole, Effect of mesh density	T E A	1D, 2D or 3D FEM: Same result, different method?	Overnight assignments
DAY 7: Saturday (15 th October)	CFD/FEM project			Closing ceremony						
	Project Evaluation			Valedictory function						