Programme schedule of short term course on **Design and Topology Optimization using Finite Element Method** 21 - 23 December, 2017, Mechanical Engineering, IIT (B.H.U), Varanasi, U.P, India

Day↓ Time→	9.30-10.00	10.00-10.45		11.00-1.00		2.00-3.00	3.00-4.00		4.10-5.30	5.30 - 6.00
	Registration & Inauguration			Finite Element Method		Computer Aided Design (CAD)			FEM Boundary Conditions	
DAY 1: Thursday (21 st December)	VENUE: New Seminar Hall, Dept. of Mechanical Engineering VENUE for rest of the classes: CAD lab		T E A	Introduction, Weighted Residual methods: Subdomain, Galerkin, Petrov-Galerkin, Least square, Collocation methods; Weak form, Rayleigh Ritz method	L U N C H	CAD: Design va assembling	rious parts and techniques	T E A	Techniques for various types of FEM Loads and Constraints: pressure, forces, contacts, friction surfaces, thermal, concentrated mass, gravity loads, etc, various types of supports such as fixed, pin and roller joints, fasteners and joints. Connections: Techniques for modeling fasteners: nuts and bolts, crews etc.	O V E R N
DAY 2: Frida (22 nd December)	Overnight assignment	Shape Optimization		Static Analysis		Dynamic Analysis			Topography Optimization	I G
	Review and solution	Gradientless shape optimization using artificial neural networks.	T E A	Critical stress, von Mises stress, stress concentration factor, deflection of beams etc., designing within factor of safety, thermal stresses, comparing FEM results with theory	L U N C H	Theoretical backg thin-walled 31 extracting midsurf surface modelin natural frequer modes), fix an analysis, analysis loads, extracting etc	round, modeling D structures, aces from solids, ng, extracting icies (normal d free modal under buckling buckling modes	T E A	Can stiffness be increased without adding mass? Frequency maximization principle; Generating various bead patterns: linear, circular and radial	H T A S S I G N M E N T S
DAY 3 Saturday (23 rd December)	Overnight assignments	Topology Optimization I		Topology Optimization II		Topology Opt	imization III		Valedictory function:	
	Review & solution	Theoretical background: How and why Topology optimization, various methods		Shape Controls: How to apply manufacturing constraints such as draw directions and symmetry		Minimization Obje stiffness or mi Optimization constraints such stress, gravity, minimum fac constrai	ective: Maximize nimize mass; with various as frequency, thickness and tor of safety nt etc.		Feedback and vote of thanks VENUE: New Seminar Hall	