Tentative programme schedule of short term course on Computer Aided Engineering: Applied CFD and FEM, 18-24 January, 2016, IIT Mandi

Day↓ Time→	9.30-10.00 10.00-11.00			11.30-1.00		2.00-3.00	3.00-4.00		4.15-5.00	5.00-5.30	
DAY 1: Monday (18 th Jan)	Registration		Inauguration		Computer Aided Engineering (CAE): FEM, CFD		Geometric features and organisation for CAE	Nodes-to-Lines-to- Surfaces-to- Geometry		Element types: 1D, 2D and 3D, 2D mesh, critical region, Mesh refinement, quality check	
DAY 2	FEM theory				Weak (variational) form type method		Stresses in critical region			How to decide?	Overnight lab assignments : winners at
		eview of overnight assignment Subdomain, Galerkin, Petrov-Galerkin, Least square, Collocation, Rayleigh-Ritz		Rayleigh-Ritz Method, Global matrix L	Solution strategies: Quad, tria or higher order element?	Abrupt geometry: plate with a hole, Effect of mesh density		1D, 2D or 3D FEM: Same result, different method?			
DAY 3	Reverse Engineering 1: Why and how with CAE			T U E Reverse Engineering 2: N A Geometry from Mesh C	application	Biomedical application	T E A	Concept of interface modelling	the end of the course will get a		
	Review of overnight assignment	3D, Tetra Meshing, face extraction	Reverse Engineering		Raw scanned data to perfect feature based geometry	H	Non-Linear analysis of Hybrid Journal Bearing using FEM (TN)	Advances in multi- physics CFD-FEM modelling		Orthodontics: FEM modelling of periodontal ligament and alveolar bone of a teeth	certificate with tablet, hard disc etc. as prize
DAY 4	Industry case study		Design for vibration 1: Dynamic response		Design for vibration 2: Harmonic response		Convective heat transfer	Scaling laws		Scaling laws for internal & external flows	
	Review of overnight assignment	Design for vibration and thermal: a multidiscip linary problem	Structural design based on natural dynamic response		Structural design based on forced harmonic response		Differential equations and concept of boundary layer	Rules for scaling analysis		Order of magnitude method	

Day↓ Time→	9.30-10.00	10.00-11.00		11.30-1.00		2.00-3.00	3.00-4.00		4.15-5.00	5.00-5.30
DAY 5: Friday (22 nd Jan)	CFD theory			Solution techniques	Concept of internal and external flows	Flow with obstruction		Concept of interface modelling		
	Review of overnight assignment	Conservation equation, flow classification		Schemes, solution methods: steady, unsteady convection- diffusion equations		Fluid and solid volume extraction	Wind tunnel technique, boundary layer, pressure, velocity etc. prediction		Conjugate heat transfer	Overnight
	How and why 2D CFD model?			2D CFD model	1	Turbomachiner	inery application		Blade design	lab
DAY 6	Review of overnight assignment	Industry case study	T E A	Flow over cylinder, lift and drag	L U N C H	Flow with blade rotation: concept of moving reference frame	From 3D to 2D blade aerodynamic design and CFD model	T E A	Flow rates and losses prediction using CFD	 assignments winners at the end of the course will get a certificate with tablet,
	Reverse Engineering 3: From photos to 3D CAD			Reverse Engineering 4: Geometry from Mesh		Project evaluation	Closing ceremony			hard disc etc. as prize
DAY 7	Best practices for taking still images	CFD/FEM project		CFD/FEM project		Presentation Winner prize distribution	Feedback and vote of thanks			