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SUMMARY:

The handout presents the design optimization tasks occurring in the mechanical engineering practice
and clarifies the basic concepts needed to set up optimization model.

The optimization algorithms are explained from simple univariate and unconditional techniques up
to the multivariate and conditional methods based on these, taking into account widely usable direct
methods, gradient methods which have favorable convergence properties and random procedures
having chance to find the global optimum. Encountering with complex engineering optimization
problems in the sensitivity analysis helps to reduce the size of the task, but in given time to solve
them the design of experiments methods are the natural choice. The uncertainties in engineering
systems can be treated by the robust design. The available optimization softwares are shown as
practical implementation of these methods and techniques to support the mechanical engineering
design. After the methods assisting the planning process (optimization machine parts and
components), we are looking at the optimization possibilities of production processes. Applying a
complex systems-based model on enterprise level, we learn how to be utilized high-quality machines
in the production process and objective decision-making, supplying information to complex
technical-economic qualification.
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1. INTRODUCTION

This electronic book was supported by TAMOP-4.1.2/08/2/A/KMR. Basically this curriculum
is addressed to the B.Sc. students but the authors hope that the other readers will interested in
this book.

To understand the main fields of this ebook, some mathematical, basic informatics, mechani-
cal, CAD and finite element background knowledge is required. The necessary CAD and fi-
nite element knowledge can be found in two other electronic books, which are also developed
in the frame of the TAMOP-4.1.2/08/2/A/KMR project so we refer to these.

In the libraries and on the internet there are lots of books, educational themes in this topic,
which all show that this field is very popular and important. The industrial specialists show
interest in the optimization researches so it is important that the results of research should be
applied in wide range. Nowadays the optimization software’s are not only a research tool, but
they are included into the commercial software packages becoming basic part of the design
process. The other trend of the development is that every industrial finite element software
packet has optimization module.

In the light of this development, the following question arises: what is the difference between
this electronic book and the hundreds of optimization books can be found in the libraries? The
authors trying to introduce the solution method of real world CAD based optimization prob-
lems, arising in the mechanical engineering practice. Overcome to the simple analytical opti-
mization problems we will focus on the different numerical solution techniques which can be
advantageously applied during the optimization of the real machine parts.

1.1. The structure of the book

In the introduction section of this electronic book the formulation of the optimization problem
will be discussed, clarifying the basic definitions. Then we present some typical optimization
problems, showing a wide range of applicability of this theme.

In the first part of the educational material we introduce the most important basic optimization
methods. Of course, there is no opportunity to introduce all type of optimization methods in
details, so we are going to focus on the procedures used by later on solving the CAE based
optimization problems.

In the next chapter, the problem classes (and the suggested solution techniques) will be dis-
cussed in the case of solving mechanical engineering problems. The different methods and
usage of the sensitivity analysis is also presented, and the role of the topology-and shape op-
timization in the whole design process will be shown. In this section we are dealing with the
analysis of complex practical problems, and briefly describe the capabilities of industrial sys-
tems, which can be illustrated with an example.

The optimization tasks are not only arises in the design phase of the products, but they have a
great importance in the production phase too. The best designed machine can be unsalable,
without an economic production technology. In this chapter, the various processes presented
an analysis of the optimal interaction, there are also highlighted the importance of optimum
and suboptimum. Complex system-levels model through the use of company will show that
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10 Engineering Optimization

how the high-quality machines can be economically used in the production process. We will
present typical manufacturing process planning optimization examples.

1.2. Optimization in the design process

In the design process (from the basic ideas to the detailed digital mockup of the product),
many aspects should be taken into account.

These requirements are usually connected to safety or economy of the product, but also the
manufacturing, using repairing considerations come to the fore. For example the designer has
to develop cheapest product, while a large number of additional conditions should be met.

Problem formulation <4

'

Defining goal function |«

:

Structural analysis-
and optimization model ¢

'

Structural analysis [«

.

Optimization

Evaluating, comparing
the results

\ 4

Generalization

Figure 1.1.: The main steps of solving engineering optimization problem [1.1]

A real design process is usually not a linear sequence, but some steps are repeated, to obtain
better solution. The main steps of solving engineering optimization can be seen in Figure 1. It
is worth to remark, that the result of the design process, is depending on the accuracy of the
introduced steps. For example, if a shape optimization should be taken and the structural res-
ponses are calculated numerically, than the error of the structural analysis, can result inaccu-
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racy in the optimized shape too. The error can come from mesh density or form the incorrect
modeling of the real boundary conditions as well.

Last time the usage of 3D CAD systems and numerical structural analysis techniques has been
increased in the industrial applications. This is because; using these tools wide range of de-
sign processes can be covered. On the other hand the “time to market” became first objective
so the computer-aided technique arises in the early stages of the design process. The modern
numerical simulation tools provide an opportunity to decrease the number of the costly and
time consuming physical experiments. Although the advanced numerical simulation tools and
optimization procedures has a significant role in the product development in the reduction of
the time, but the whole design process cannot be automated.

In case of solving structural optimization task we can choose from analytical and numerical
methods. The analytical methods are often not suitable for the analysis of complex engineer-
ing problems, so this educational material mainly deals with the numerical techniques of the
structural optimization. The numerical procedures based on iterative searching techniques
which lead to an approximate solution. The searching process continues until the so-called
convergence condition is satisfied, so we are sufficiently near the optimal solution.

1.3. The basic elements of an optimization model

1.3.1.  Design variables and design parameters

A structural system can be described by a set of quantities, some of which are viewed as va-
riables during the optimization process. Those quantities defining a structural system that are
fixed during the automated design are called preassigned parameters or design parameters and
they are not varied by the optimization algorithm. Those quantities that are not preassigned
are called design variables. The preassigned parameters, together with the design variables,
will completely describe a design.

From the mathematical point of view three types of design variables can be distinguished:

The design variables can be considered as continuous or discrete variables. Generally it is
easier to work with continuous design variables, but a part of the real world problems contains
discrete type of design variables. An intermediate solution, when we know that a large num-
ber of discrete design variable values should be considered, then it will be categorized as
pseudo discrete. In this case, we solve the task considering this variable a continuous design
variable and after the solution the closest possible discrete values will be checked.

From the physical point of view there are four types of the design variables:

1. Mechanical or physical properties of the material (Material design variable)

Material selection presents a special problem. Conventional materials; have discrete proper-
ties, as for example a choice is to be made from a discrete set of materials. If there have a few
numbers of materials, the task is easier, if we perform the structural analysis for each material
separately and comparing the results to choose the optimum material. A typical application is
for reinforced composite materials to determine the angles of the reinforcements. Such type of
design variables can be considered to be continuous ones.
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2. topology of the structure, connecting members of the scheme, or the number of members of
the interface schema, (Topology Design Variables)

The topology of the structure can be optimized automatically in certain cases when members
are allowed to reach zero size. This permits elimination of some uneconomical members dur-
ing the optimization process. An example of a topology design variable is if we looking for
the optimal truss structure considering one design variable for each truss element (1 if the
member exists or 0 if the member is absent). This type of design variables, according to the
mathematical classification is not continuous.

3. The shape of the structure (Configurational or Geometric Design Variables)

This type of design variable leads us to the field of shape optimization. In case of machine
design application, the geometry of the part should be modified close to the stress concentra-
tion areas, in order to reduce the stresses. On other hands, the material can be removed in the
low stress areas, in order to make the structure lighter. So we are looking the best possible
shape of the machine part. For example the variable surface of the structure can be described
by B-Spline surfaces and the control nodes of such splines can be chosen as a design variable.
This is a typical example for shape optimization, and these types of design variables are
usually belong to the continuous category.

4. Cross-Sectional Design Variables or the dimensions of the built-in elements

Mainly for historical reasons, size-optimization is a separate category, which has got the sim-
plest design variables. For example, the cross-sectional areas of the truss structure, the mo-
ment of inertia of a flexural member, or the thickness of a plate are some examples of this
class of design variable. In such cases the design variable is permitted to take only one of a
discrete set of available values. However, as discrete variables increase the computational
time, the cross- sectional design variables are generally assumed to be continuous.

The design variables and design parameters are together clearly define the structure. If the
design variables are known in a given design point, this completely defines the geometry and
other properties of the structure. In order to guarantee this, the chosen design variables must
be independent to each other.

1.3.2.  Optimization constraints

Some designs are useful solutions to the optimization problem, but others might be inadequate
in terms of function, behaviour, or other considerations. If a design meets all the requirements
placed on it, it will be called a feasible design. In most cases, the starting design is a feasible
design. The restrictions that must be satisfied in order to produce a feasible design are called
constraints.

From a physical point of view the constraints can be separated into two groups:

Constraints imposed on the design variables and which restrict their range for reasons other
than behaviour considerations will be called design constraints or side constraints. The geo-
metrical optimization constraints describes the lower the upper limit of the design variables.
These are expressed in an explicit form of the design variables. These could be for example a
minimum and maximum thickness of the plate.

Constraints that derive from behaviour requirements will be called behaviour constraints. Li-
mitations on the maximum stresses, displacements, or buckling strength are typical examples

www.tankonyvtar.hu © Gabor Kortélyesi, BME




Introduction 13

of behaviour constraints. This type of constraints based on a result of a structural analysis.
Explicit and implicit behaviour constraints are both encountered in practical design. Explicit
behaviour constraints are often given by formulas presented in design codes or specifications.

From the mathematical point of view, in most cases, constraints may usually be expressed as
a set of inequalities:

g,(x)<0 (=1...m;i=1..n), (1.1)

where m is the number of inequality constraints and x; is the vector of design variables. In a
structural design problem, one has also to consider equality constraints of the general form:

h(x)=0 (=m+l,..p), (1.2)

where p-m is the number of equalities. In many cases equality constraints can be used to elim-
inate variables from the optimization process, thereby reducing their number.

The equality-type constraints can be used to reduce the number of design variables. This type
of constraints may represent also various design considerations such as a desired ratio be-
tween the width of a cross section and its depth.

We may view each design variable as one dimension in a design space and any particular set
of variables as a point in this space. In case of two design variables the design space reduces
to a plan, but in the general case of n variables, we have an n-dimensional hyperspace. A de-
sign which satisfies all the constraints is a feasible design. The set of values of the design va-
riables that satisfy the equation gj(x;) = 0 forms a surface in the design space. It is a surface in
the sense that it cuts the space into two regions: where one where gj(x;) > 0 and the other
gi(x)<0. The design space and the constraint surfaces for the three-bar truss example are
shown in Figure 1.2. The set of all feasible designs form the feasible region. Points on the
surface are called constrained designs. The /™ constraint is said to be active in a design point
for which g; (x;) = 0 and passive if g; (x;) <0. If gj(x;) > 0 the constraint is violated and the cor-
responding design is infeasible.
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Figure 1.2.: Optimality constraints in the space of the design variables

1.3.3.  The objective function

There usually exist an infinite number of feasible designs. In order to find the best one, it is
necessary to form a function of the variables to use for comparison of feasible design alterna-
tives. The objective function (or cost function) is the function whose least value is usually-
wanted in an optimization procedure. It is a function of the design variables and it may
represent the weight, the cost of the structure, or any other criterion by which some possible
designs are preferred to others. We always assume that the objective function (Z = F(x,)), is to
be minimized, which entails no loss of generality since the minimum of -F(x;) occurs where
the maximum of F{(x;) takes place (see Figure 1.3). The selecting the objective function has
got a significant impact on the entire optimization process. For example, if the cost of the
structure is assumed to be proportional to its weight, then the objective function will represent
the weight. The weight of the structure is often of critical importance, but the minimum
weight is not always the cheapest. In general, the objective function represents the most im-
portant single property of a design, but it may represent also a weighted sum of a number of
properties. A general cost function may include the cost of materials, fabrication, transporta-
tion, operation, repair, and many other cost factors. In this case, large numbers of members
are considered in the form of the objective function, where it is appropriate to analyze the
impact of certain members of the product price. Special attention should be paid to the com-
ponents, which can result a "nearly constant" objective function. They are not worth to take
into account. It is not true, that the most complex objective function gives the best results. In
general, the objective function is a nonlinear function of the design variables.
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Figure 1.3.: The local extremum of the goal function

It is also possible to optimize simultaneously for multiple objective function, but this is only
recommended if dominant objective function could not be selected, or the objective functions
are in contradiction. This is the field of multi-objective optimization. The simplest solution
technique is if we create a weighted sum of the objective functions and solve the problem as a
standard optimization problem with only one objective function.

Pareto has developed the theory of the multi-objective optimization in 1896. It is important to
note that the solution of an optimization problem with one goal function is generally a design
point in the space of the design variables, while the solution of the Pareto-optimization prob-
lem is a set of design points, called Pareto front. A Pareto optimal solution is found if there is
no other feasible solution that would reduce some objective function without causing a simul-
taneous increase in at least one other objective function.

We illustrated this complicated field with an example about ,,Optimization of Geometry for
Car Bag” (this example was solved by company Sigma technology using the IOSO optimiza-
tion software: www.iosotech.com ), which can be found in the attached database for exam-
ples.

1.3.4.  Formulating the optimization problem

The general formulation of the constrained optimization problem in the » dimensional Eucli-
dian space is the following:

Z = F(x,) >min
gj(x,.)£0£=l,...,n J=Lam (1.3)
h(x)=0j=m+1,.,p.

J

This is an optimization problem with one goal function (¥(x;)), with inequality (g(x;)) and
equality (%(x;)) constraints is formulated for » design variable. The numbers of the inequality
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constraints are m and the numbers of the equality constraints are (p-m). In the engineering
problem definition, we often highlight the side constraints, defining the searching domain in
the n dimensional space. This could be formulated as follows:

X, <x,<x, i=l..,n, (1.4)

where X; and X; are the lower and upper limits of the searching domain.
14. Optimization examples

Large number of the optimization problem types made impossible to introduce all relevant
fields, as optimization problems can be formulated on every side of the life, they are not only
related to engineering problems.

The field of economics also often uses the optimization methods for performing economic
analysis and supporting decision. Maximizing the profit or optimizing the elements of a given
stock portfolio is an important task.

In the production technology the maximum capacity utilization of the different machines
plays a very important role, considering different raw materials, which is not available in un-
limited quantity.

The known travelling salesman is also an optimization problem: finding the shortest way be-
tween the cities. The solution for 50 cities can be seen on Figure 1.4.

Figure 1.4.: The solution of the travelling salesman problem for 50 cities
(Wolfram Mathematica)

In the area of the image and audio processing, for example, an optimization problem is to re-
duce the noise. A large field of the mathematics is the game theory, uses the optimization
techniques very intensively too.
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In the mechanical engineering practice the first industrial applications were in the field of
military and space industry. In the Figure 1.5 the outline of a modern military airplane (F22)
can be seen, by the design, beside the minimum weight, also the minimization of the radar
cross section was an important task. In the space industry the weight minimization problem
has got a very important role. An example in the field of space industry is a weight minimiza-
tion of support in a rocket, which includes both topology and shape optimization problem (see
Figure 1.6).

Figure 1.5.: Military airplane

Figure 1.6.: Support in a rocket
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Designing trucks, buses and cars different optimization techniques were used also very inten-
sively. Nowadays most parts of these vehicles are undergone some level of optimization
process even if the weight of the part is neglectable comparing the weight of the whole car.
Because of the heavy price competition by the suppliers in the car industry, the 5-10% weight
reduction which can be reached by using shape optimization techniques, gives significant ad-
vantages to the company.

Nowdays several optimization processes can be combined with different structural analysis
modules. Not only with static load cases can be considered, but for example dynamic, temper-
ature, flow, nonlinear systems can be optimized too. Additionally not only parts, but whole
subassemblies using contact conditions between the parts can be solved.

But we have to know, that because the optimizer call lot of times the structural analysis mod-
ule, the complicated problems often very time consuming if we have only one PC. Generally
this type of problem formulation leads to the field of supercomputing; so supercomputers or
computer clusters should be used to solve such type of industrial problems.

1.5. References
[1.17 Jarmai Karoly, Ivanyi Miklds: Gazdasagos fémszerkezetek analizise ¢s tervezése. Mii-

egyetemi kiado, 2001

1.6. Questions

1. Define the general form of an optimization problem!
2. Define the design variable, design parameter and goal function!
3. What kind of classes are avaiable as design variables from phisical and mathematical

point of view?
4. What is the main difference between the side constraints and behaviour constraints?
Explain some relevant optimization examples from the different field of the industry?

9]
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2.  SINGLE-VARIABLE OPTIMIZATION

Only single-variable functions are considered in this chapter. These methods will be used in
later chapters for multi-variable function optimization.

2.1. Optimality Criteria

Sufficient conditions of optimality:
Suppose at point x*, the first derivative is zero and the first nonzero higher order derivative is

denoted by n

(1) If n is odd, x* is a point of inflection

(il))  Ifniseven, x* is a local optimum

(a) If that derivative is positive, x* is a local minimum

(b) If that derivative is negative, x* is a local maximum.
2.2. Bracketing Algorithms
Finds a lower and an upper bound of the minimum point

2.2.1.  Exhaustive Search

Figure 2.1 The exhaustive search method uses equally spaced points.

Function values are evaluated at n equally spaced points (Figure 2.1).

Algorithm:

Step 1: Set x(V =g, x"D =p, 1) =a+%j, 1<j<n.Setk=I.

Step 2: If f(x(k_l) )2 f(x(k) )S f(x(k+l)), the minimum lies in (x(k_l) ,x(k”) ),
Terminate.

Else go to Step 3.
Step 3: Is k=n?Ifno, set k=k+1, go to Step 2.

If yes, no minimum exists in (a, b) Accuracy in the result: ﬁ (b—a).

Average number of function evaluations to get to the optimum is (% + 2) .
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2.2.2.  Bounding Phase Method

This method is used to bracket the minimum of a function.

Algorithm:
Step 1: Choose an initial guess x» and an increment A. Set k=0.
Step 2: If f(x(o) —|A|)2 f(x(o))z f(x(o) +|A|) then A is positive.

Else if f (x(o) —|A|)£ f (x(o))s f (x(o) +|A|) then A is negative.
Else go to Step 1.
Step 3: Set xD =x®) 4 2k A
Step 4: If f(x(k+1))< f(x(k)), set k =k +1 and go to Step 3.
Else The minimum lies in the interval (x(k_l) ,x(k+l)) and Terminate.
If A is large, poor bracketing.
If A is small, more evaluations.
2.3. Region-Elimination Methods
Fundamental rule for Region-elimination methods:
For x; <x, where x|, x, lie in (a, b).
1. If f(x;)> f(x,) then minimum does not lie in (a, x;).
2. If f (xl ) <f (xz) then minimum does not lie in (xz, b).

2.3.1.  Golden Section Search

Interval is reduced according to golden rule.

Properties: For only two trials, spread them equidistant from the center. Subinterval
eliminated should be of the same length regardless of the outcome of the trial. Only one new
point at each step is evaluated, other point remains from the previous step.

Algorithm:
Step 1: Choose a lower bound @ and an upper bound b. Also choose a small
number ¢ . Normalize the variable x by using the equation, @ =(x—a)/(b—a). Thus, a, =0,

b,=1,and L, =1.Set k=1.
Step 2: Set @ =a, +(0.618)L, and w, =b,—(0.618)L,,. Compute f(a)l)

or f f (a)z) depending on whichever was not evaluated earlier. Use the fundamental region-

elimination rule to eliminate a region. Set new a,, and b,, .

Step 3: Is|L,|<esmall? If no, set k=k+1, go to Step 2.

If yes, Terminate.
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Interval reduces to (0.618)”_1 after n evaluations. One new function evaluation at each
iteration.
Consider the following function:

f(x) =x?+54/x

Step 1: We choose a=0 and b=35. The transformation equation becomes
o=x/5. Thus, a,=0, b, =1,and L, =1. Since the golden section method works with a

transformed variable o, it is convenient to work with the transformed function:

f(w) = 25w + 54/(5w)

In the w-space, the minimum lies at @*=3/5=0.6. We set an iteration counter k =1.

Step 2: We set @ =0+(0.618)1=0.618 and @, =1-(0.618)1 or @, =0.382.
The corresponding function values are f(@)=27.02 and f(@,)=31.92. Since
f (a)l)< f (a)z), the minimum cannot lie in any point smaller than @, =0.382. Thus, we
eliminate the region (a, 602) or (0, 0.382). Thus, a, =0.382 and b, =1. At this stage,
L,=1-0.382=0.618. The region being eliminated after this iteration is shown in Figure 2.2.
The position of the exact minimum at @ = 0.6 is also shown.

N~

|
Iteration 1 . w—line : : |
0.000 0.382 LFO.618 1.000
minimum
| |
Iteration 2 . ! : |
0.382 T0.618 0.764 1.000
0.382 7 0.764

Figure 2.2: Region eliminations in the first two iterations of the golden section search algorithm.

Step 3: Since |Lw| is not smaller than &, we set kK =2 and move to Step 2.

This completes one iteration of the golden section search method.
Step 2: For the second iteration, we set

w, = 0.382 + (0.618)0.618 = 0.764
w, =1 —(0.618)0.618 = 0.618.

We observe that the point @, was computed in the previous iteration. Thus, we only need to
compute the function value at w;: f ((01)= 28.73. Using the fundamental region-elimination

rule and observing the relation f (a)1)> f (a)z), we eliminate the interval (0.764, 1). Thus, the
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new bounds are 4q,=0382 and b,=0.764, and the new interval is
L, =0.764—0.382 = 0.382, which is incidentally equal to (0.618)*! Figure 2.2 shows the

final region after two iterations of this algorithm.

Step 3: Since the obtained interval is not smaller than & we continue to
proceed to Step 2 after incrementing the iteration counter £ to 3.

Step 2: Here, we observe that @ =0.618 and @, =0.528, of which the point
o, was evaluated before. Thus, we compute f (a)z) only: f (a)2)= 27.43. We also observe
that f(@)< f(@,) and we eliminate the interval (0.382, 0.528). The new interval is (0.528,
0.764) and the new range is L, = 0.764 —0.528 = 0.236, which is exactly equal to (0.618)’!

Step 3: Thus, at the end of the third iteration, L, =0.236. This way, Steps 2
and 3 may be continued until the desired accuracy is achieved.

We observe that at each iteration, only one new function evaluation is necessary. After three
iterations, we have performed only four function evaluations. Thus, the interval reduces to

(0.618) or 0.236.

24. Methods Requiring Derivatives

— Use gradient information.
— At local minimum, the derivative of the function is equal to zero.
Gradients are computed numerically as follows:

Fx®+ax®O)—f(xO—px®)
fr(x(t)) = S (2.1)

" faO+ax®)—2f @ O)+f(xO-ax®)
Fr(x®) = oy (2.2)

The parameter AxD is usually taken to be a small value. In all our calculations, we assign
Ax? to be about 1 per cent of XD

Ax® = {0.0llx(t)l if |x®|>0.01 (2.3)

0.0001 otherwise.

According to Equations (2.1) and (2.2), the first derivative requires two function evaluations
and the second derivative requires three function evaluations.

2.4.1.  Newton-Raphson Method

A linear approximation to the derivative is made to zero to derive the transition rule.
Algorithm:

Step 1: Choose initial guess x; and a small number ¢. Set k=I.
Compute f'(x;).

Step 2: Compute f"(x;).
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Step 3: Calculate x;,; =x; — f”(xk) .Compute f"(x;,).
S )
Step 4: If | f'(x;41)| < €, Terminate.

Else set k =k +1 and Go to step 2.

Convergence of the algorithm depends on the initial point and the nature of the objective
function.

2.4.2.  Bisection Method

Both function value and sign of derivative are used to derive the transition rule.

Algorithm:

Step 1: Choose two points a and b such that f'(a) <0 and f'(b) >0, and a
small number &.Set L=a and R=5b.

Step 2: Calculate = (R+L)/2 and evaluate / '(Z).

Step 3: If | f'(2)| < &, Terminate.

Else if f'(z) <0 set L=z and Go to step 2; else if f'(z)> 0 set R =z and Go to step 2.

Consider again the function:
f(x) = x? +54/x.

Step 1: We choose two points a =2 and b=35 such that f'(a) =—9.501 and
f'(b) =7.841 are of opposite sign. The derivatives are computed numerically using Equation

(2.1). We also choose a small number ¢ = 1073,

Step 2: We calculate a quantity z=(x+x,)/2=3.5 and compute
f'(z)=2.591.
Step 3: Since f'(z)> 0, the right-half of the search space needs to be

eliminated. Thus, we set x; =2 and x, =z=3,5. This completes one iteration of the
algorithm. At each iteration, only half of the search region is eliminated, but here the decision
about which half to delete depends on the derivatives at the mid-point of the interval.

z=(2+35)/2=2750 , 4 /'(z) =-1.641

Step 2: We compute
Step 3: Since f'(z) <0, we set x; =2.750 and x, =3.500.
Step 2: The new point z is the average of the two bounds: z=23.125. The

function value at this point is f"(z) =0.720.
Step 3: Since | f ’(z)| « €, we continue with Step 2.

Thus, at the end of 10 function evaluations, we have obtained an interval (2.750, 3.125),
bracketing the minimum point x*=3.0. The guess of the minimum point is the mid-point of
the obtained interval or x=2.938. This process continues until we find a point with a
vanishing derivative. Since at each iteration, the gradient is evaluated only at one new point,
the bisection method requires two function evaluations per iteration. In this method, exactly
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half the region is eliminated at every iteration; but using the magnitude of the gradient, a
faster algorithm can be designed to adaptively eliminate variable portions of search region — a
matter which we discuss in the following subsection.

2.4.3.  Secant Method

Both function value and derivative are used to derive the transition rule.
Algorithm:

Same as Bisection method except step 2 is modified as follows:

Step 2: Calculate z =R — (F(R) = ;:EIZ))) (R-1) and evaluate f'(2).

2.5. References

[2.1] Powell, M. J.D. (1964): An efficient method for finding the minimum of a function
of several variables without calculating derivatives. Computer Journal. 7, 155-162.

[2.2] Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M. (1983): Engineering
Optimization-Methods and Applications. New York: Wiley.

[2.3] Scarborough, J. B. (1966): Numerical Mathematical Analysis. New Delhi: Oxford &
IBH Publishing Co.

2.6. Questions

Explain the sufficient conditions of the optimality!

Summarize the main characteristics of the bracketing methods!
Explain the fundamental rules of region-elimination methods!
What are the advantages of methods using derivatives?

=
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3. MULTI-VARIABLE OPTIMIZATION

Functions of multiple variables (N variables) are considered for minimization here. Duality
principle can be used to apply these methods to maximization problems.

3.1. Optimality Criteria

A stationary point X is minimum, maximum, or saddle-point if v? f (%) is positive definite,
negative definite, or V2 7(%) <>0.

Necessary Conditions: For x* to be a local minimum, V/(x*)=0 and V2 f(x*) is positive
semidefinite.

Sufficient Conditions: Vf(x*)=0 and V? f(x*) is positive definite than, x* is an isolated
local minimum of f(x).

3.2 Direct Search Methods
Use only function values; no gradient information is used.

3.2.1.  Simplex Search Method

— A simplex is a set of (N +1) points. At each iteration, a new simplex is created from the

current simplex by fixed transition rules.
— The worst point is projected a suitable distance through the centroid of the remaining
points.

Algorithm:
Step 1: Choose 7y > 1, f€(0, 1), and a termination parameter ¢. Create an
initial simplex".

Step 2: Find x; (the worst point), x; (the best point), and Xg (next to the
1 N+1
worst point). Calculate x, = — in .
i=l,i#h
o (7 +cC ifi=i {0.25, if N =3;
X = where A= {yN77-2 .
/ xj(o) + C A, otherwise, N—_:,;) otherwise.
Step 3: Calculate the reflected point x, =2x, —x,. Set x,,, =x,.

If £(x,) < f(x)), set x,,, =(1+)x, =, (expansion).
Elseif f(x,)= f(x;),set x,,, =(1—f)x. — Px, (contraction).

! One of the ways to create a simplex is to choose a base point x° and a scale factor C. Then (N + 1) points are
x? and for i,j=1,2,..,N.
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Else if f(x,) < f(x,) < f(x}),set x,,, =1+ f)x, — fx, (contraction).

Calculate f(x,,,) andreplace x, by x

new new*

" ) 12
Step 4: If {NZ: (f(xi )= S )) } < ¢, Terminate.

a N+1
Else go to Step 2.

3.2.2.  Powell's Conjugate Direction Method

— Most successful direct search method

— Uses history of iterations to create new search directions

— Based on a quadratic model

— Generate N conjugate directions and perform one-dimensional search in each direction
one at a time

Parallel Subspace Property: Given a quadratic function g(x), two arbitrary but distinct
points x and x@, and a direction d. If y(l) is the solution to min q(x(l) + Ad) and y(z) is

the solution to min q(x(z) + Ad), then the direction (y(z) —y(l))is C-conjugate to d or
(y(z) —y(l))TCd = Diagonal matrix.

Iz

b)

Figure 3.1 Illustration of the paralell subspace property with two arbitrary points and an arbitrary search direction in
(a). The same can also be achieved from one point and two coordinate points in (b).

Instead of using two points and a direction vector to create one conjugate direction, one point
and coordinate directions can be used to create conjugate directions (Figure 3.1).

Extended Parallel Subspace Property: In higher dimensions, if from x the point y(l) is
found after searches along each of m(< n) conjugate directions, and similarly if from x? the
point y(z) is found after searches along each of m conjugate directions, s(l), 5P eees SO

then the vector ( y(z) - y(l)) will be the conjugate to all of the m previous directions.
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Algorithm:

© and a set of N linearly independent

Step 1: Choose a starting point x
directions; possibly s =e® fori=1,2,...,N.

Step 2: Minimize along N unidirectional search directions using the previous
minimum point to begin the next search. Begin with the search s direction and end with

s Thereafter, perform another unidirectional search along sO.

Step 3: Form a new conjugate direction d using the extended parallel subspace
property.

Step 4: If ||d || is small or search directions are linearly independent,
Terminate.

Else replace s) =sY™ forall j=N,N—1,...,2. Set s = d/|d| and go to Step 2.

A test is required to ensure linear independence of conjugate directions. If the function is
quadratic, exactly N loops through steps 2 to 4 are required. If the function is quadratic,
exactly (N —1) loops through Steps 2 to 4 is required. Since in every iteration of the above

algorithm exactly (N +1) unidirectional searches are necessary, a total of (N —1)x(N +1) or

(N? —1) unidirectional searches are necessary to find N conjugate directions. Thereafter, one

final unidirectional search is necessary to obtain the minimum point. Thus, in order to find the
minimum of a quadratic objective function, the conjugate direction method requires a total of

N? unidirectional searches.

Disadvantages:

— It takes usually more than N cycles for nonquadratic functions

— One-dimensional searches may not be exact, so directions may not be conjugate
— May halt before the optima is reached

Consider the Himmelblau function:
Minimize f(x1,%;) = (xZ + x, — 11)2 + (x; + x5 — 7)?
in the interval 0 <x;,x, <5.
Step 1: We begin with a point x©0 = (0, 4)T . We assume initial search
directions as sV =(1,0)T and s@ = (O,I)T.

Step 2: We first find the minimum point along the search direction s Any
point along that direction can be written as x” = x© + asW | where o is a scalar quantity
expressing the distance of the point x” from x9 Thus, the point x” can be written as
x? =(a, 4)T . Now the two-variable function f(x;,Xx,) can be expressed in terms of one
variable o as

F(a) = (a®? =7+ (a + 9% +x3 — 7)2,
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which represents the function value of any point along the direction s and passing through

x Since we are looking for the point for which the function value is minimum, we may
differentiate the above expression with respect to o and equate to zero. But in any arbitrary
problem, it may not be possible to write an explicit expression of the single-variable function
F(a) and differentiate. In those cases, the function F(«) can be obtained by substituting
each variable x; by x/ . Thereafter, any single-variable optimization methods, as described

in Chapter 2, can be used to find the minimum point. The first task is to bracket the minimum
and then the subsequent task is to find the minimum point. Here, we could have found the
exact minimum solution by differentiating the single-variable function F(«) with respect to

a and then equating the term to zero, but we follow the more generic procedure of numerical
differentiation, a method which will be used in many real-world optimization problems. Using
the bounding phase method in the above problem we find that the minimum is bracketed in
the interval (1,4) and using the golden section search we obtain the minimum a*=2.083

with three decimal places of accuracy. Thus, x® = (2.083,4.000)" .
Similarly, we find the minimum point along the second search direction s@ from the point

xD A general point on that line is
x(a@) = xM + as@ = (2.083. (4 + a))".
The optimum point found using a combined application of the bounding phase and the
golden section search method is @*=-1592 and the corresponding point is
+@ =(2.083,2.408)" .

From the point x@, we perform a final unidirectional search along the first search direction
and obtain the minimum point x® = (2.881,2.408)" .

Step 3: According to the parellel subspace property, we find the new
conjugate direction.

d=x® —x® = (2.881,2.408 )T — (2.083,4.000 )" = (0.798—1.592)T

Step 4: The magnitude of search vector d is not small.  Thus, the new
conjugate search directions are

s@ =(1,0)7,
sM = (0.798,-1.592)7/]|(0.798, —1.592)7|
= (0.448,-0.894)".

This completes one iteration of Powell's conjugate direction method. Figure 3.2 shows the

new conjugate direction on a contour plot of the objective function. With these new search
directions we now proceed to Step 2.
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Figure 3.2 Two iterations of Powell’s conjugate direction method.

Step 2: A single-variable minimization along the search direction sU from
the point x©® =(2.881,2.408)7 results in the new point x* =(3.063,2.045)7 . If the
objective function had been a quadratic function, we would have achieved the optimum point
at this step. However, it is interesting to note that the solution x¥ is close to the true mini-
mum of the function. One more unidirectional search along 5@ from the point x¥ results in
the point x9 =(2.988,2.0457.  Another ~minimization along s results  in
x® =(3.008,2.006)” f(x® =0.004).

Step 3: The new conjugate direction is
d=(x® —x®) =(0.055,-0.039)"

The unit vector along this direction is (0.816, — 0.578)T .
Step 4: The new pair of conjugate search directions are s =(0.448,-0.894)7

and s? = (0.055,—0.039)" respectively. The search direction d (before normalizing) may be
considered to be small and therefore the algorithm may terminate.

We observe that in one iteration of Step 2, (N +1) unidirectional searches are necessary.

Thus, computationally this method may be expensive. In terms of the storage requirement, the
algorithm has to store (N +1) points and N search directions at any stage of the iteration.

3.3. Gradient-based Methods

— Direct search methods are expensive

— Gradient-based methods assume existence of f(x), Vf(x), and v? f(x)
—  All methods employ

x(k+1) — x(k) + a(k)S(x(k))
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(k)

where "’ is the step length and s(x(k )) is the search direction.

—  Usually, a™ is selected to minimize the function in s(x(k)) direction. Update search
direction iteratively.

3.3.1.  Numerical Gradient Approximation

. In real-world engineering problems, gradients are often difficult to calculate.
. Even if they are available, their computation could be error prone
. Numerically gradients are computed:

af (X)

oy oo = C +ax) =7 —ax"n/2 8%
TEDx® = (£ +a x0) = 2 O) + F(x0 =8 xO)) /(2 2O

62f(X)| o _

® ®,.(® ®
9x.07; = [f(x TA X)X FAXT)

—f(x; © 4 xl()t)x(t) —A x].(t)) - f(xl.(t) —A xl()t)x(t) +A xj(t))
+f(xi(t) —A x(t)x(t) —A x(t))] /(4 A x(t) A x(t))

The computation of the first derivative with respect to each variable requires two function
evaluations, thus totaling 2N function evaluations for the complete first derivative vector.

The computation of the second derivative o* f/ 8xi2 requires three function evaluations, but
the second-order partial derivative 82 f /(x; ,0x ;) requires four function evaluations. Thus,
the computation of Hessian matrix requires (2N’ +1) function evaluations (assuming the

symmetry of the matrix).

3.3.2.  Cauchy's Method (Steepest Descent)

Greatest decrease in s(x(k)) =—Vf(x) direction.

Algorithm:
Step 1: Choose a maximum number of iterations M to be performed, an initial

point x© , two termination parameters &;,&,, and set k =0.
Step 2: Calculate Vf (x(k )) , the first derivative at the point )
Step 3: If HVf (x(k))H <&, Terminate.

Else if k> M , Terminate.
Else go to Step 4.
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Step 4: Perform a unidirectional search to find o®

using &, such that /(
FOEDY = 7P —g®vrx™)) is minimum. One criterion for termination is when
HVf(x(k“) )-Vf (x® )H <e,.

kD (R)

Step 5: Is B

<& ? If yes, Terminate.

X
Else set k =k +1 and go to Step 2.

Cauchy's method works well when x© s far away from x*.

3.3.3.  Newton's Method

Use a search direction s(x(k)) = —sz(x(k))_IVf(x(k)) .
Algorithm: Same as Cauchy's method except step 4 is modified:

Step 4: Perform a line search to find o® using &, such that
FFDY = 1 (xB — OV (0N gr®)Y) is minimum.

0

Newton's method works well when x© is close to x*.

3.3.4. Marquardt's Method

— A compromise between Cauchy's and Newton's method.
— When the point is far away from the optimum, Cauchy's method is used and when the
point is close to the optimum Newton’s method is used.

Algorithm:
Step 1: Choose a starting point, x(o), the maximum number of iterations, M,
and a termination parameter, ¢. Set £ =0 and A0 =10* (a large number).
Step 2: Calculate Vf (x(k)).
Step 3: If HVf(x(k))H <& or k> M , Terminate.
Else go to Step 4
1
Step 4: Calculate s(x(k)) = —[H(k) + ﬂ,(k)IT Vf(x(k)) .
Set x**D = +S(x(k)).
Step 5: Is f(x* Dy < £(x™Y)9 If yes, go to Step 6.
Else go to Step 7.
Step 6: Set A%+D = %l(k) , k=k+1, and go to Step 2.
Step 7: Set A% =225 and go to Step 4.

Need to compute Hessian matrix, which may be cumbersome.

3.3.5.  Variable-Metric Method (Davidon-Fletcher-Powell method)

— Uses positive characteristics of Newton’s method using only first-order information
—  The search direction is
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S(x) = =AW F(x*) (3.1
where AR 1s the Hessian matrix.

— Starting with an identity matrix 49 =1, iteratively evaluate the Hessian matrix with
k o (k
g ) =vr ()
A(k) = A(k_l) + A x(k_l) A x(k_l)T

A x®&=DT A e(x(k-1))

— AGD A (kD) (AKD A g(xk-D))T (3:2)
Ae(x®=D)TA(k — 1) A e(xk-1D)

— The above relation preserves the positive definiteness of the matrix A.
Algorithm:

Same as Fletcher-Reeves algorithm except the expression for search direction s(x*) in step 4,

which is set according to equation 3.1.
Let us consider the Himmelblau function again:

Minimize f(x;x;) = (x2 + x, — 11)% + (x; + x2 — 7)2.

The inverse of the Hessian matrix at the minimum point x*= (3, 2)" is found to be
- 0.016 —0.009
1(p*) —

H6D = (Co009 0,035 ) (3-3)
Successive iterations of the DFP method transform an initial identity matrix into the above
matrix. This allows the DFP search to become similar to Newton's search after a few
iterations. The advantage of this method over Newton's method is that the inverse of the
Hessian matrix need not be calculated. Thus, the algorithm has the effect of a second-order
search, but the search is achieved only with first-order derivatives.

Step 1: Once again we begin with the initial point x@ = (o, O)T . The
termination parameters are all set to be 1073,

Step 2: The derivative vector at the initial point 1is equal to
VI (x @) =(=14,-22)" . The search direction is s'© = (14,22)".

Step 3: A unidirectional search from x(¥ along s© gives the minimum point.

We calculate the gradient at this point:

Vf(xW) = (-30.707,18.803)7

In order to calculate the new search direction, we first compute the parameters required to be
used in Equation (3.2):

Ax©@ =xM — x© = (1,788, 2.810)7,

Ae(x@) =e(xMW) —e(x(®) = (-16.707,40.803)

=)
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With these parameters, we compute the next estimate of the matrix A4 as follows:

AI[U‘J&![I} )T A(“]Ar( (U')(/‘l”},ﬁ(( [m))
AzOTAc(z®)  Ae(z@)TAD Ae(z®)

.8 (é:;iﬁ)(ms& 2.810)
(u 1) + 16,707
)\ 10,803 )
1 0\ /—16.707 1 0\ /—16.707\\”
_(U 1)( 40.803 )(([{ %))( 4[1]6&7]87))
(—16.707, 40303)(0 1)( 40'803)
/10 0.038 0.060 0.144 —0.351
- (U 1) (0 060 UUJ.S) (—0'351 0.856 )

Knowing AD , we now obtain the search direction s using Equation (3.1) as follows:

AN = 40

(1.788, 2810(

0= S - (572

The unit vector along this direction is (0.924, 0.382)". It is interesting to observe that this

search direction is similar to the first search direction sV obtained by using the Fletcher-
Reeves algorithm.

Step 4: Performing a unidirectional search along s from the point x(l), we

obtain the minimum point: *@ = (2.248, 2.989)T having a function value f (x(z)) =26.237
(Figure 3.2).
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Figure 3.2: Three iterations of the DFP method.

Step 5: We observe that the point x@ s very different from the point x® and
calculate the gradient at x®: v/ (x?) = (~18.225,44.037)" . Since HVf (X(z))H is not close to

zero, we increment k and proceed to Step 4. This completes one iteration of the DFP method.

The initial point x| the point x| and the point x* are shown in Figure 3.2.
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Step 4: The second iteration begins with computing another search direction
s@ =—A(2)Vf(x(2)). The matrix 4® can be computed by calculating Ax and Ae(x(l))

as before and using Equation (3.2). By simplifying the expression, we obtain the new matrix
A = ( 0.070 —0.017)
—-0.017 0.015

and the new search direction 1s found to be

s® =(0.731,-0.976)T
Note that this direction is more descent than that obtained in the Fletcher-Reeves method after
one iteration.

Step 5: The unidirectional search along s@  finds the best point:

) =(2.995,1.991)7 with a function value equal to f(x®) =0.003.
Another iteration updates the 4 matrix as follows:

3 _ ( 0.030 —0.005
4 (—0.005 0.020 )

The new search direction is found to be s® =(0.014,0.095)7 . The unidirectional search

method finds the new point x®* =(2.997.2.000)” with a function value equal to 3x10*.
Another iteration finds the following 4 matrix:

0.018 -0.011
@ =
A (—0.011 0.036 )

and the new search direction s = (0.003,—0.003)” . A unidirectional search finds the point

sl :(3.000,2.000)T with a function value equal to zero. One final iteration finds the 4

matrix:
0.016 —0.009
) =
A (—0.009 0.035 )

which is identical to the inverse of the Hessian matrix of the Himmelblau function at the mi-
nimum point (Equation (3.3)). The above calculation shows how the original identity matrix

A has transformed into 7~ (x*) matrix in successive iterations. From the fourth iteration
onwards, the search direction is very similar to that in the Newton's method, because the

matrix A®) is similar to the inverse of the Hessian matrix. Since, during that iteration the
solution is also close to the minimum, the search converges faster to the minimum point. One
difficulty with this method is that the matrix 4 sometimes becomes ill-conditioned due to
numerical derivative computations and due to inaccuracy involved in unidirectional searches.
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Questions

Explain the sufficient and the necessary conditions of the optimality!
What properties fulfill conjugate directions in Powell's method? Why?
What compromise is reached by Marquardt's Method? How?

How is the Hessian matrix used in DFP method?
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4. CONSTRAINED OPTIMIZATION

Single and multi-variable functions with equality or inequality constraints or both are
considered.

4.1. Kuhn-Tucker Conditions

We assume that objective function f(x) (x is an N-dimensional array), inequality constraints
g;(x),j=12,...J, and equality constraints /4 (x),k =1,2,..., K are all differentiable. The
NLP problem is as follows:

Minimize f(x)
Subject to gix)=z0 j=12.,]
he(x)=0 k=12..,K

The Kuhn-Tucker problem is to find vectors x (size N), u (size J), and v (size K) that satisfy
Vf(x) - Zi_ wiVg;(x) — Tk, Vhe(x) =0 N equations

gix)=0 j=12,.,]
h(x)=0 k=12,.,K
ugix)=0 j=1.2.,J
=0 j=12.,]

If g ;(X) =0, the constraint ; is active or binding at ¥ .

If g;(¥)> 0, the constraint / is inactive or nonbinding at x .

Kuhn-Tucker Necessity Theorem:
Consider the NLP problem shown above. Let £, g, and % be differentiable functions and x* be

a feasible solution to NLP. Let 7 ={j ‘g j(x*)=0}. Furthermore, Vg ;(x*) for je/land

Vh, (x*) for k=1, 2,..., K are linearly independent (Constraint qualification). If x* is an

optimal solution to NLP, there exists a (u*, v*) such that (x*u*v*) solves Kuhn-Tucker
problem.

If a feasible point does not satisfy constraint qualification, K-T necessity theorem can be used
to prove that the point is not optimal but not vice versa.

Kuhn-Tucker Sufficiency Theorem:
Let the objective function be convex, the inequality constraints g;(x) be all concave

functions forj = 1, 2,..., J and equality constraints /%, (x) for k=1, 2,..., K be linear. If there

exists a solution (x*,u*,v*) that satisfies the K-T conditions, then x* is an optimal solution to
the NLP problem.
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4.2. Transformation Methods

— Original constrained problem is transformed into a sequence of unconstrained problems
via penalty functions

— Methods vary according to the way constraints are handled.

Interior penalty method: Each sequence contains feasible points

Exterior penalty method: Each sequence contains infeasible points

Mixed penalty method: Each sequence contains feasible or infeasible points

4.2.1.  Penalty Function Method

— Penalty concept:

P(x,R) = f(x) + 2(R, g(x), h(x))

where R is a set of penalty parameters, (2 is the penalty term so selected to favor the selection
of feasible points over infeasible points:

1. Parabolic Penalty: Q= R{h(x)}z. Used for equality constraints and it is an exterior
penalty term. A small value of R is started with and increased gradually.
2. Infinite Barrier Penalty: Q= IOZOZ],E].,‘ g j(x)‘. It assigns an infinite penalty to infeasible

points.
3. Log Penalty: Q=-R ln[g(x)]. A large value of R is started with and reduced to zero
gradually. It is an interior penalty term.

4. Inverse Penalty: Q=R

D } Like Log penalty, the value of R starts from large value
g(x

and reduces to zero. It is also an interior penalty term.
5. Bracket Operator Penalty: Q= R< g(x)>2 , where <a> =, when a is negative; zero,

otherwise. Here R starts from a small value and increases to a large value. This is an
exterior penalty term.

Algorithm:

Step 1: Choose two termination parameters &;,&,, an initial solution x? a

penalty term €, and an initial penalty parameter R Choose a parameter ¢ to update R
such that 0 <c <1 is used for interior penalty terms and ¢ >1 is used for exterior penalty
terms. Set 1 =0.

Step 2: Form P(x",r?)= f(x“)+QR", g(x"), h(x"))

Step 3: Starting with a solution x'”, find xX“™" such that P(x*"P,R") is minimum
for a fixed value of RY. Use €1 to terminate the unconstrained search.

Step 4: Is [P(x, R) = P(x , R“™| < &,

If yes, set x! = x and Terminate.
Else go to Step 5.

Step 5: Choose RD =cR® Set t=t+1 and go to Step 2.
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Consider the constrained Himmelblau's function:
Minimize (X2 +x, —11)% + (% +x2 = 7)?

subject to
(6 =52 +x2-26>0. x1,x,=0.

The inclusion of the constraint changes the unconstrained optimum point. The feasible region
and the optimum point of this NLP is shown in Figure 4.1. The figure shows that the original

optimum point (3,1)" is now an infeasible point. The new optimum is a point on the
constraint line that touches a contour line at that point.

450.0
250.0
150.0
— &= 1069
60.0
4 — — 300
=== 40.0

T2

Figure 4.1: The feasible search space and the true minimum of the constrained problem.

Step 1: We use the bracket-operator penalty term to solve this problem. The
bracket operator penalty term is an exterior penalty term. We choose an infeasible point

x@ =(0,0)7 as the initial point. We also choose a small value for the penalty parameter:

R =0,1. We choose two convergence parameters & =&, = 107°.
Step 2: The next task is to form the penalty function:

P(x,R©) = (xZ + x, — 11)% + (x; + x% — 7)?
+0.1 X {(x; — 5)% + xZ — 26)?

In the above formulation, the variable bounds must also be included as inequality constraints.
For clarity and ease of illustration, we have not included the variable bounds in our
formulation.

Step 3: The above unconstrained function can now be minimized using one of
the methods described in the previous chapter. Here, we use the steepest descent method to

solve the above problem. We begin the algorithm with an initial solution x@ =0, 0)"
having f (x(o))=170,0. At this point, the constraint violation is -1.0 and the penalized

function value P(x(o), R(O)) =170,100. Intermediate points obtained by the steepest descent
algorithm are tabulated in Table 4.1, and some of these points are shown in Figure 4.2. After
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150 function evaluations, the solution x* = (2.628, 2.475)T having a function value equal to
f(x*)=5.709 is obtained. At this point, the constraint violation is equal to (-14.248), but has

a penalized function value equal to 25.996, which is smaller than that at the initial point. Even
though the constraint violation at this point is greater than that at the initial point, the steepest

descent method has minimized the penalized function P(x , R(O)) from 170.100 to 25.996.
We set x\V = (2.628, 2.475)T and proceed to the next step.

Sequence Solution Constraint
t R(M® x(©) P (X(t) ’ rRM® ) violation
1 0.1 0,0 170.100 —1.000
(2.569, 2.294)T 27.119 —14.828
(2.657,2.455)T 26.019 —14.483
(2.628,2.475)T 25.996 —14.248
2 1.0 (2.628,2.475)" 208.70 —14.248
(1.730, 3.412)T 75.140 —3.655
(1.166,2.871)T 60.986 -3.058
(1.011,2.939)T 58.757 —1.450
3 10.0 (1.011,2.939)T 77.591 —1.450
(0.906, 3.016)" 60.530 -0.143
(0.844,2.934)T 60.233 -0.119

Table 4.1: Tabulation of the Intermediate Points Obtained Using the Steepest Descent Algorithm

Step 4: Since this is the first iteration, we have no previous penalized function
value to compare with; thus we move to Step 5.

Step 5: At this step, we update the penalty parameter RW =10x0,1=1,0 and

move to Step 2. This is the end of the first sequence. It is important here to note that with a
different initial point, we could have also converged to the same point. But simulation runs
with certain initial points may have taken a longer time to converge than with other points.
However, solutions in subsequent sequences will be identical for all simulations.

Step 2: The new penalized function in the second sequence is as follows:

PO, RM) = (x2 + x, — 11)% + (x; + x2 — 7)2
+1.0 X {(x; — 5)% + x7 — 26}°.
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Step 3: At this step, we once again use the steepest descent method to solve the
above problem from the starting point (2.628,2.475)7 . Table 4.1 shows intermediate points
of the simulation run. The minimum of the function is found after 340 function evaluations
and is x® = (1.011, 2.939)T . At this point, the constraint violation is equal to -1.450, which

suggests that the point is still an infeasible point. The penalized function and the minimum of
the function are both shown in Figure 4.3. The progress of the previous sequence is also
shown using dashed lines. Observe that this penalized function is distorted with respect to the
original Himmelblau function. This distortion is necessary to shift the minimum point of the
current function closer to the true constrained minimum point. Also notice that the penalized
function at the feasible region is undistorted.

k=01
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Figure 4.2: A simulation of the steepest descent method on the penalized function with R = 0.1.

Step 4: Comparing the penalized function values, we observe that
P(x?,1,0)=58.664 and P(x",1,0)=25.996. Since they are very different from each other,
we continue with Step 5.

Step 5: The new value of the penalty parameter is R® =10,0. We increment
the iteration counter ¢ =2 and go to Step 2.

In the next sequence, the penalized function is formed with R® =10,0. The penalized
function and the corresponding solution is shown in Figure 4.4. This time the steepest descent
algorithm starts with an initial solution x? . The minimum point of the sequence is found to

be x® =(0.844,2.934)" with a constraint violation equal to -0.119. Figure 4.4 shows the

extent of distortion of the original objective function. Compare the contour levels shown at
the top right corner of Figures 4.2 and 4.4. With R =10.0, the effect of the objective function
f(x) is almost insignificant compared to that of the constraint violation in the infeasible

search region. Thus, the contour lines are almost parallel to the constraint line. Fortunately in
this problem, the increase in the penalty parameter R only makes the penalty function steeper
in the infeasible search region. In problems with a sufficiently nonlinear objective function
and with multiple constraints, a large value of the penalty parameter may create one or more
artificial local optima in the search space, thereby making it difficult for the unconstrained
search to obtain the correct solution. The advantage of using the unconstrained search method
sequentially is that the unconstrained search is always started from the best point found in the
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previous sequence. Thus, despite the presence of many local optima in the search space, the
search at every sequence is initiated from a point near the correct optimum point. This makes
it easier for the unconstrained search to find the correct solution.

After another sequence (iteration) of this algorithm, the obtained solution is

x® = (0.836, 2.940)T

with a constraint violation of only - 0.012. This point is very close to the true constrained op-
timum solution. A few more iterations of the penalty function method may be performed to
get a solution with the desired accuracy. Although a convergence check with a small
difference in the penalized function value at two consecutive sequences is used in this
algorithm, any

R=10

<. 800.0
“\ { ----800.0
\| - - -400.0
{ ——2500

150.0
4 — —100.0
| -—- 750
© | —— 830

Ty

Figure 4.3: Intermediate points using the steepest descent method for the penalized function with R=1.0 (solid lines).

other convergence criteria (for example, a small difference in the x-vector of the solutions in
two successive sequences) may also be used.

In the presence of multiple constraints, it is observed that the performance of the penalty
function method improves considerably if the constraints and the objective functions are first

normalized before constructing the penalized function. An inequality constraint g ; (x)>0

can be normalized as follows:

gj(x)

8max

=0,

where gu. is the maximum value of the constraint gj(x) in the search space. Often,
engineering design problems contain constraints restraining resource or capacity of 5, as

g';(x) <b;. The constraint can be normalized as follows:

_9;® -

1 0

J

If an upper bound of the objective function is known, the objective function can also be
normalized as shown above, but the normalization of the constraints is more important than
that of the objective function.
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R =10.0

Fea.sibl]e Régidn

T2

o]

Figure 4.4: Intermediate points obtained using the steepest descent method for the penalized function with R =10.0
(solid lines near the true optimum). Notice the distortion in the function.

4.2.2.  Method of Multipliers

— Distortion of functions is avoided by using fixed parameter penalty method
— The following penalty function and update rules are used:

P(x,00,70) = f(0) + RELLU; 0 + 07D = (77)3

+R TE_{ (he(x) + T0)2 — (292},

The final solution x” is a K-T point. Furthermore, the Lagrange multipliers are computed

easily:

— T
v, = —2Rt]
Algorithm:
Step 1: Choose a penalty parameter R, termination parameters & and &,.

Choose an initial solution x¥. Set multipliers 0'5-0) = 2',50) and the iteration counter # =0.

Step 2: Next, form the penalized function:
p ®) () = +RYY (x) + P12 = (5DH2
(x,0%, 7)) = f(x) 1t (gi(x) + ;7D = (0;7)%}

+R 5 (e () + T2 = (7).

Step 3: Use an unconstrained optimization technique to solve the penalized

function P(x,a(’), r(t)) from the starting point x with an convergence factor &;. During

www.tankonyvtar.hu © Gyobrgy Gyurecz, OE




Constrained Optimization 43

this optimization, o and © are kept fixed; only the vector x is varied. Let us say the
solution is x*D.

Step 4: Is “P(x(”l) , O'(t), ® ) —P(x(t) , oD , T(H)H <&?
If yes, set x! =x*D and Terminate.
Else go to Step 5.

Step 5: Update a§t+l)=<gj(x(t))+0'§-t)> for all j = 12,., J

and r,((”l) =hy (xDy+ r,((’) forall k=1,2,...,K. Set t =¢+1 and go to Step 2.

4.3. Constrained Direct Search

— Detailed structure of constraints are considered,

— Functions may be discontinuous and non-differentiable,

— Algorithms are heuristic in nature,

— Algorithms start from a feasible point. When a new point is created by a fixed rule make
sure that the point is feasible. If not, modify by a predefined rule.

4.3.1. Random Search Methods

Points are generated at random.

Luus and Jaakola Algorithm:

Step 1: Given an initial feasible point x°, an initial range z O such that the mi-
nimum, x*, lies in (x° —%zo,xo +%zo). Choose a parameter 0 <& <1. For each of Q
blocks, initially set ¢ =1 and p=1.

Step 2: For i = 1,2,..., N, create points using a uniform distribution of 7 in the
range (-0.5, 0.5). Set x*) =x?" +rz""

Step 3: If x(P is infeasible and p < P, repeat Step 2.

If xP) is feasible, save x?) and f (x(p )}, increment p and repeat Step 2.
Else if p = P, set x? to be the point that has the lowest f (x(p )) over all feasible x’
including x77! and reset p =1

Step 4: Reduce the range via z = (1- ,9)2;’_1

Step 5: If ¢> O, Terminate.

Else increment g and continue with Step 2

Suggested values of parameters are £=0.05, p =100, and Q is related to the desired
reduction in variable uncertainity.

4.4. Method of Feasible Directions

— Rather than relying on solutions to LP problems, use linear approximations to determine a
locally good search direction,
—  Similar to gradient-based unconstrained search,
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— Zoutendijk's method: Have a search direction d that is descent (Vf (x(t))-d <0) and
feasible (Vg(x")-d > 0).

Algorithm:
Step 1: Set an iteration counter # = 0. Choose an initial feasible point x and
a parameter for checking the constraint violation, ¢.

Step 2: At the current point xO let I @ pe the set of indices of active
constraints. In other words,

I(t) = {]:0 < gj(x(t)) < g,j = 1;21)]}

1if 17 is empty, use d =00 = —Vf(x(t)), normalize d* and go to Step 4
Step 3: Solve the following LP:
Maximize 6
subject to
Vf(x®)d < -6,
Vgi(xd =0, jel®,
-1<1<1, i=12,.,N.

Label the solution 4 and 6.
Step 4: If O(t) < 0, Terminate.

Else @ =min| a:g,(x* +ad”)=0,j=1,2 ... J, and @ >0].

If no a > 0 exists, set a = .
Step 5: Find a” such that

Fx® +a®d®) = min[f(x® + ad®): 0< a < a]

Set x*D = x4 oOg®W "t =¢41, and go to Step 2

Comments:

1. Only a subset of constraints are used to define a subproblem, thus LP is smaller,
2. Since only binding constraints are used, zigzag iteration pattern results.
Consider the constrained Himmelblau function again:

Minimize f(x) = (x? + x, — 11)2 + (x; + x5 — 7)?

g1(x) =26 — (%, = 5)* = x5 20,

g2(x) =20—4x; —x, =20,

X1, X, = 0.
Let us recall that the minimum point of the above problem lies at x* = (3, 2)T with a function
value equal to zero.
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Step 1: Let us choose an initial feasible point x©@ =(O,O)T and a tolerance

parameter & = 107> We also set the iteration counter ¢ =0.

Step 2: At this step, let us find the active constraints at point x© 1t turns out
that only variable bounds are active. Calling these two inequality constraints g3(x)=x; 20

and g4(x)=x, >0, we update the active constraint set /® ={3,4}. Since this set is not

empty, we continue with Step 3.
Step 3: At this step, we have to find a descent direction which is maximally

away from both constraints g; and g4. At the initial point, both active constraints are

orthogonal to each other. Thus, the desired search direction may make equal angle with all
active constraints. But in any other situation, this may not be true. Thus, we find the optimal
search direction by solving an LP problem. Calculating the derivative of the objective

function and the active constraints at x© numerically and denoting the search direction
d=(d, ,dZ)T , we obtain the following LP problem:

Maximize 6
subject to
—14d, — 22d, < -0
d, =0,
d, >0,
-1<d;d, <1

There exist a number of difficulties with the above formulation to be directly solved using the
simplex method of LP technique. First of all, in the above formulation, the variables can take
negative values, which are not allowed in a LP technique. Thus, we first substitute ¢, =d; +1

for i=1,2 such that the variables f; can take only positive values in the range (0, 2). We
rewrite the above LP problem in terms of the new variables:

Maximize 0
subject to
14t, + 22t, — 0 = 36
ti—602>1,
t,—02=>1,
0 < tyt, < 2.

Secondly, the simplex method can handle only equality constraints. Slack variables are
usually added or subtracted to convert inequality constraints to equality constraints.

Therefore, for each of the above constraints we add a slack variable ( y; to ys). Thirdly, we
observe that the problem variables and the slack variables do not constitute an initial basic
feasible solution. Thus, we introduce three more artificial variables y¢ , y;, and yg) to
constitute an initial basic feasible solution for the first phase of the dual simplex search
method. Thus, the underlying LP problem becomes as follows:

Maximize 6
subject to
14t1 + 22t2 - 9 - yl + y6 :36,
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th—0—-y,+y;, =1,
t,— 0 —y; +yg =1, 4.1
ty + Y4 =2,
t, + ys=2,
tt2, Y1, Y2, t3.Y4, Y5, Y6 Y7, Vs 2 0.

The three-variable problem now becomes an 11-variable problem. At first, we solve the above
problem for the objective:

Maximize 0
subject to

(V6 + y7 + ¥s).

Since all artificial variables must also be nonnegative, the solution to the above problem
would have ys = y; = yg= 0, because the above objective function at this point would be

zero. This solution will then be a candidate solution for the initial basic feasible solution of
the problem

0000 0 00O0-1-1-1

cp | Basic | t1 to € y1 Yo Y3 Ya Ys Vs Y7 Ys

-1| ys |1422-1-1 0 000 1 0 0[36]| 3¥=1.64
—1| yr 1 0-1 0-1 000 0 1 0f 1| t=0c
-1 ys O[L]-1 0 0-100 0 0 1| 1| 1=1 «
0 | w 1000001000 0|2 2=x
0 s 0100 0001 0 0 02| =2
(Af)y |1523-3-1-1-100 0 0 0| f=-38

T

Table 4.2: The First Tableau for the First Phase of the Dual Simplex Search Method

00 0 0 0 0O0O0-1-1 -1

cp | Basic [ t1ta @ y1 Y2 YsvVaYs Ye Y7 Us

1| ys |14 021 -1 0[22] 0 0 1 0-22[14| 064 «
-1| w 10-1 0-1 000 0 1 0| 1| $=00
0] 01-1 0 0-100 00 1| 1] —ve

0] g 10 000 01000 0f2] 2=c
0] ws 00 1 0 0 101 00 -1|1] =1
(Af), [15020-1-1 22 00 0 0-23| f=-15

-

Table 4.3: The Second Tableau for the First Phase of the Dual Simplex Search Method
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presented in Equation (4.1). The successive tables for the first problem of obtaining a feasible
starting solution are shown in Tables 4.5 to 4.8.
The objective function value at the Table 4.5 is f =-38. (Equation (4.2) is used as the

objective.) In the table, it is clear that the nonbasic variable ¢, corresponds to a maximum
increase in the function value. (The quantity (Af ) p is larger for ¢, .) Thus, we choose ¢, as the

new basic variable.
It turns out from the minimum ratio rule that the basic variable yg must be replaced by the the

variable f, in the next iteration. We formulate the next row-echelon matrix. The outcome of

the calculation is shown in Table 4.6.
Note that the objective function value has improved considerably from the previous iteration.
Here, we also observe that the nonbasic variable y; corresponds to the maximum value of the

quantity (Af ) . Thus, we choose y; as the new basic variable. Using the minimum ratio rule,

we also observe that the current basic variable y, must be replaced by the variable y;

(Table 4.7). At the end of the third iteration, we observe that the nonbasic variable ¢, must
replace the basic variable y,. The objective function value at this iteration is f =—1.

00 0 0 0000 —1-1-1
cp | Basic ty ta 0 v Y2ysyaYs Yo Y7 Vs
0] ws 064 0O 095-004 0 1 0 0O 004 0-1 064
-1 i 0-1.00 000 -1 0 0 0O 000 1 0/[1.00]| «
0] to 064 1 004 -004 0 0 0 0 004 0 0 |1.64
0] wyy 1.00 0 000 000 O O 1 O 000 0O 0]200
0| ys | ~0.64 0 004 004 0 0 0 1-004 0 0036
(Af)q 1.00 0 —1.00 000 -1 0 0 0-100 O0-1| f=-1
T

Ratios: 1 (first row), 1 (second row), 2.57 (third row), 2 (fourth row), and —ve (fifth row)
Table 4.4: The Third Tableau for the First Phase of the Dual Simplex Search Method

We form the next row-echelon matrix in Table 4.8. At this stage, we observe that all artificial
00 0 0 00 0O —1 -1 -1
Basic | ¢1 t2 O vy Y yavays Y6 Y1 Ys
Y3 00 159-004 064 1 0 0 0.04 -064—-1| 0
tq 1 0-1.00 000-100 O 0O O 000 100 O 1
ty 01 059 -0.04 064 0 004 -064 0| 1

1

1

~

o o o o oOlg

0
Y4 00 100 000 100 O 0 0.00 -1.00 0
Ys 0 0-059 004 004 0O 1 -004 064 O
(Af)q 00 000 000 00 0-100-100—-1| f=0

OO = O

Table 4.5: The Fourth Tableau for the First Phase of the Dual Simplex Search Method
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variables are zero and the objective function is also equal to zero. This is the termination
criterion for the first phase of the dual phase method. The solution of the above iteration is

h=1,1t=1,y=0,»y,=0, y3=0, y,=1,and y5 =1. This solution was not obvious in
the formulation of the problem presented in Equation (4.1).

We begin the second phase with the above solution as the initial solution. The objective in the
second phase is to maximize the original function: f(x)= 6. Since the artificial variables are

no more required, we discontinue with them in subsequent computations.

00 1 0 0000
cp | Basic | t; &5 O v Y23 YsYs
0| y3 | 00[1.59]-004 064 1 0 00| 125 =0 «
0| & 1 0-1.00 000-100 0 0 0|1 ve
0| t2 | 01 059-004 064 0 0 01| zi5=1.69
0| v | 00 100 000 100 0 1 01| 1=1
0| v | 00-059 004 004 0 0 11| —ve
(Af), 00 100 000 000 0 0 0| f(z)=0

T

Table 4.6: The First Tableau for the Second Phase of the Dual Simplex Search Method

Now, we get back to Step 3 of the feasible direction search method.

Step 3: (cont.) The solution of the LP problem is ¢ =(2,2)" or 4@ =(1,1)7
and 0 =1. This solution implies that the resulting search direction makes equal angles with
each of the two active constraints.

Step 4: Since 8 =1 > 0, we do not terminate the algorithm. Instead, we
calculate the limits along the direction d O before an infeasible point is found. Any generic
point along d® from x® can be written as x(a)=x(0) +ad® or x(a)=(a,a)T . The
upper limit on a can be calculated by finding points along d © that intersect with each

constraint. The problem of finding the intersection of a straight line and any generic curve can
be posed as a root-finding problem, which can be solved using an optimization algorithm

discussed in Chapter 2. We substitute the expression for x; =@ and x, = a in each constraint
and then minimize the following problem:

Minimize abs [g;(x(a))]. 4.3)

For example, the upper limit along d ' can be found for the first constraint by minimizing
the unidirectional function:

abs [26 — (a — 5)? — a?]

Since the absolute value of the argument is always considered, the above function allows only
positive values. Since we are looking for points for which the constraint has a value zero,
those points correspond to the minimum value of the above expression. Note that the problem
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described in Equation (4.3) is a single-variable function. Thus, we first bracket the minimum
and then minimize the function. Using the bounding phase method from a starting point

a® =5 and A=1 , we obtain the bracketing interval (4, 6). Next, we use the golden section
search in that interval to obtain the minimum point with three decimal places of accuracy:
a=5.098. The same solution can also be obtained by solving the quadratic expression

g1(x()) =0. Similarly, the limit on the second constraint can also be calculated: ) =4,0.

Other constraints produce upper limits 3 = ary = 0, which are not acceptable. Thus, the true
upper limitis & =4,0.

001 0 0 000
cp | Basic | t1 82 0 Y2 Y3 Ya Ys

1 6 | 001-003 040 063 0 00| —ve

0| # 1 00-003-060 063 0 0[1| =00

0| t2 | 010-003 040 -037 0 01| —ve

O | yo | 000[003] 060 063 1 01| 545=35 «
0| v5 | 000 003-040 037 0 11| 5453=235
(Af)q 000 003 —04-063 0 0| f(z)=0

T

Table 4.7: The Second Tableau for the Second Phase of the Dual Simplex Search Method

0010 0 0 00
cp | Basic [ t1t20 y1 ¥2 Y3 ya ¥s
1 0 0010 1 0 10
0| t 0000 0 O 10
0| t 0100 1 -1 1 0
0 Y1 000 121-22 1 0|35
0| vs» [0000-1 1-1 1|0
(Af)q 000 0-1 0-1 0| f(z)=1

Table 4.8: The Third Tableau for the Second Phase of the Dual Simplex Search Method

Step 5: Once the lower and upper limit on a are found, we perform another one
dimensional search with the given objective function to find the minimum point along that
direction. Using the golden section search, we obtain the minimum point in the interval (0, 4):
o*=2.541, which corresponds to the new point xWD = (2.541,2.541)7 . At this point, we
increment the iteration counter and go to Step 2. This completes one iteration of the feasible
direction method. The progress of this iteration is shown in Figure 4.5.

Step 2: At the new point, we find that no constraints are active. Thus, / M =g ,
which means that the point is not on any constraint boundary and we are free to search in any
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direction locally. Therefore, we choose the steepest descent direction and the search direction
is set according to the negative of the gradient of the objective function at the new point:

d® = —7f(x®) = (16.323,-16.339)",

which is computed numerically. At this point the function value is f xM)=8,0.

Step 4: Once again, we compute the upper limit along the search direction d O3
Posing the root-finding problem as an optimization problem as shown in the previous

iteration, we obtain the parameter & = min[O. 162,0. 149] =0.149.

Step 5: Performing a unidirectional search along in the domain (0, 0.149), we
obtain a*=0.029. The corresponding point is x? = (3.018, 2.064)T with an objective
function value f (x(z)) =0.107.

This process continues until a point with a small derivative of the objective function is found.
If the intermediate points fall on the constraint boundary frequently, this method may
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Figure 4.5: A number of iterations of the feasible direction method.

be expensive in terms of the overall computational time required to solve the problem. This

situation may happen for problems with a narrow feasible region.

4.5. Quadratic Approximation Method

— Quadratic approximation to objective functions
— Linear approximations to constraints to make the calculations easier

Algorithm:
Step 1: Given x¥ and a suitable method for solving QP problem
Step 2: Formulate QP
Minimize Vf(xO)d +5dTV2f (xO)d
Subject to R (x®) + Vh (x®)Td =0 k=12..K

9;(x®) +7g;(x)Td =0 j=12..]
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Step 3: Solve the QP problem and set xOD = x4 g
Step 4: Check for convergence. If not converged, Go to step 1

— Lead to nonvertex solutions
—  The term V? f (x(Z )) in the objective function may be replaced by a Lagrangian term or a
variable-metric approximation for Hessian for easier computation

This procedure can be repeatedly used to solve general non-linear programming problems by
formulating a QP problem at the current best solution. This methodology is called Sequential
Quadratic Programming or SQP. Many commercial optimization software implements this
algorithm in which the resulting QP problem is solved using a quasi-Newton multi-variable
optimization algorithm.
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4.7. Questions

1. What are the Kuhn-Tucker conditions? How are they used?
2. Explain the concept of penalty function!
3. Explain the method of feasible directions!
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5. NONTRADITIONAL OPTIMIZATION TECHNIQUES

This chapter makes a brief description of a nontraditional search and optimization methods.
Further details will be supplied by separate sources.

5.1. Genetic Algorithms

Genetic algorithms (abbreviated as GAs) are computerized search and optimization
algorithms designed based on the mechanics of natural genetics and natural selection.

5.1.1.  Fundamental Differences with Traditional methods

— GAs work on a coding of parameters, instead of parameters. GAs exploit the coding
similarities to achieve a parallel search.

— GAs work on a population of points, instead of a single point. That is why GAs are likely
to find the global solutions.

— GAs do not require any derivative or auxiliary information. This extends the application
of GAs to a wide variety of problem domains. That is why GAs are robust.

— GAs use probabilistic transition rules, instead of deterministic transition rules. This
reduces the bias in the search. Initially the search direction is random and as iteration
progresses, GAs obtain a directed search adaptively.

Algorithm:
Step 1: Choose a coding to represent problem parameters, a selection
operator, a crossover operator, and a mutation operator. Choose population size, N,
crossover probability, p., mutation probability, p,,. Initialize a random population of

strings of size N. Set ¢ =0.

Step 2: Evaluate each string in the population.

Step 3: If t > ¢, or other termination criteria is satisfied, Terminate.
Else Go to step 4.

Step 4: Reproduction on the population.

Step 5: Crossover on random pairs of strings.

Step 6: Mutation on every string.

Step 7: Set t =¢+1 and Go to step 2.

5.1.2.  Reproduction Operator

Selects good strings from a population. Some of popular reproduction operators are as
follows:
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Proportionate Selection Strings are selected according to their fitness. Specifically, a string

with fitness f; is allocated L number of copies. Better strings are allocated

avg
more copies under this scheme.
Tournament Selection Usually, s strings are selected at random from a population, and the
best is chosen. This procedure is continued until the whole population is filled up. This
scheme can be performed with and without replacement. When performed without
replacement, the best string gets s copies.
Ranking Selection All strings are first ranked from best to worst and ranked in a way so that
the best gets s copies and the worst gets zero copies. Each string is then selected with a
probability depending on its rank in the population.

5.1.3.  Crossover Operator

Exchanges information between two strings selected at random. Some popular operators are
as follows:

Single-point Crossover A cross site is chosen at random. The contents on one side of the
site are exchanged between parent strings:

1 1)1 1 1 1 1|10 0 O
=

0 0|0 O O 0 01 11

Two-point Crossover Two cross sites are chosen at random. The contents between two sites
are exchanged between parent strings:

111 1|1 1 110 01 1
—

0|0 0|0 O 0|1 1]0 ©

Uniform Crossover Each bit-position is exchanged between parent strings with a probability
0.5:

111 11 10010
=

00 00O 01101

The search power of uniform crossover is most among these three operators, but the
destruction probability of good partial substrings in parent strings is also more in uniform
Crossover.

In order to preserve some previously obtained good solutions, all strings in the population is
not used in crossover. The proportion of population used in crossover is known as probability
of crossover. Usually, a proportion of 0.60-0.95 is used.
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5.1.4.  Mutation Operator

Alters a bit value to another with a small probability. In a binary string, mutation operation
is shown below:

11111 = 11101

Mutation maintains diversity in the population.
— Other advanced operators exist and tried
The objective is to minimize the function

fOax2) = (xf +xp = 11)% + (%1 + x5 = 7)°
in the interval 0 <x; x, <6. Recall that the true solution to this problem is (3, 2)" having a

function value equal to zero.

Step 1: In order to solve this problem using genetic algorithms, we choose
binary coding to represent variables x; and x,. In the calculations here, 10-bits are chosen
for each variable, thereby making the total string length equal to 20. With 10 bits, we can get
a solution accuracy of (6—0)/(210—1) or 0.006 in the interval (0,6). We choose roulette-

wheel selection, a single-point crossover, and a bit-wise mutation operator. The crossover and
mutation probabilities are assigned to be 0.8 and 0.05, respectively. We decide to have 20
points in the population. We set 7,,, =30 and initialize the generation counter ¢ =0.
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Step 2: The next step is to evaluate each string in the population. We calculate
the fitness of the first string. The first substring (1100100000) decodes to a value equal to

(29 +28 4 25) or 800. Thus, the -corresponding parameter value is equal to
0+(6—0)x800/1023 or 4.692. The second substring (1110010000) decodes to a value equal

to (29+28+27+24) or 912. Thus, the corresponding parameter value is equal to
0+(6-0)x912/1023 or 5.349. Thus, the first string corresponds to the point

x® =(4.692,5.349)T . These values can now be substituted in the objective function
expression to obtain the function value. It is found that the function value at this point is equal
to f (xM)=959.680. We now calculate the fitness function value at this point using the

transformation rule: F(x(l))=1.0/(1.0+959.680)=0.001. This value is used in the

reproduction operation. Similarly, other strings in the population are evaluated and fitness
values are calculated. Table 5.1 shows the objective function value and the fitness value for
all 20 strings in the initial population.

Step 3: Since t =0 < ¢, =30, we proceed to Step 4.

Step 4: At this step, we select good strings in the population to form the
mating pool. In order to use the roulette-wheel selection procedure, we first calculate the
average fitness of the population. By adding the fitness values of all strings and dividing the
sum by the population size, we obtain F' =0.008 . The next step is to compute the expected
count of each string as F(x)/F . The values are calculated and shown in column A of Table
5.1. In other words, we can compute the probability of each string being copied in the mating
pool by dividing these numbers with the population size (column B). Once these probabilities
are calculated, the cumulative probability can also be computed. These distributions are also
shown in column C of Table 5.1. In order to form the mating pool, we create random numbers
between zero and one (given in column D) and identify the particular string which is specified
by each of these random numbers. For example, if the random number 0.472 is created, the
tenth string gets a copy in the mating pool, because that string occupies the interval (0.401,
0.549), as shown in column C. Column E refers to the selected string. Similarly, other strings
are selected according to the random numbers shown in column D. After this selection
procedure is repeated n times (n is the population size), the number of selected copies for each
string is counted. This number is shown in column F. The complete mating pool is also shown
in the table. Columns A and F reveal that the theoretical expected count and the true count of
each string more or less agree with each other. Figure 5.1 shows the initial random population
and the mating pool after reproduction. The points marked with an enclosed box are the points
in the mating pool. The action of the reproduction operator is clear from this plot. The inferior
points have been probabilistically eliminated from further consideration. Notice that not all
selected points are better than all rejected points. For example, the 14th individual (with a
fitness value 0.002) is selected but the 16th individual (with a function value 0.005) is not
selected.
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Figure 5.1.: The initial population (marked with empty circles) and the mating pool (marked with boxes) on a contour
plot of the objective function. The best point in the population has a function value 39.849 and the average function
value of the initial population is 360.540.

Although the above roulette-wheel selection is easier to implement, it is noisy. A more stable
version of this selection operator is sometimes used. After the expected count for each
individual string is calculated, the strings are first assigned copies exactly equal to the
mantissa of the expected count. Thereafter, the regular roulette-wheel selection is
implemented using the decimal part of the expected count as the probability of selection.

This selection method is less noisy and is known as the stochastic remainder selection.

Step 5: At this step, the strings in the mating pool are used in the crossover
operation. In a single-point crossover, two strings are selected at random and crossed at a ran-
dom site. Since the mating pool contains strings at random, we pick pairs of strings from the
top of the list. Thus, strings 3 and 10 participate in the first crossover operation. When two
strings are chosen for crossover, first a coin is flipped with a probability p, =0.8 to check

whether a crossover is desired or not. If the outcome of the coin-flipping is true, the crossing
over is performed, otherwise the strings are directly placed in an intermediate population for
subsequent genetic operation. It turns out that the outcome of the first coin-flipping is true,
meaning that a crossover is required to be performed. The next step is to find a cross-site at
random. We choose a site by creating a random number between (0, ¢ —1) or (0, 19). It turns

out that the obtained random number is 11. Thus, we cross the strings at the site 11 and create
two new strings. After crossover, the children strings are placed in the intermediate
population. Then, strings 14 and 2 (selected at random) are used in the crossover operation.
This time the coin-flipping comes true again and we perform the crossover at the site 8 found
at random. The new children strings are put into the intermediate population. Figure 5.2
shows how points cross over and form new points. The points marked with a small box are
the points in the mating pool and the points marked with a small circle are children points
created after crossover operation. Notice that not all 10 pairs of points in the mating pool
cross with each other. With the flipping of a coin with a probability p. = 0.8, it turns out that

fourth, seventh, and tenth crossovers come out to be false. Thus, in these cases, the strings are
copied directly into the intermediate population. The complete population at the end of the
crossover operation is shown in Table 5.2.
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Figure 5.2.: The population after the crossover operation. Two points are crossed over to form two new points.
Of ten pairs of strings, seven pairs are crossed.
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It is interesting to note that with p. =0.8, the expected number of crossover in a population

of size 20 is 0.8x20/2 or 8. In this exercise problem, we performed seven crossovers and in
three cases we simply copied the strings to the intermediate population. Figure 5.2 shows that
some good points and some not-so-good points are created after crossover. In some cases,
points far away from the parent points are created and in some cases points close to the parent

points are created.

0010100100 1010101010
1010100001 0111001000
0001001101 0011100111
1110011011 0111000010
0010100100 1010101010
0011100010 1011000011
0011100010 1011000011
0111000010 1011000110
0101011011 0000000111
1001000110 1000010100
0011100101 0011111000
0011100101 0011111000
0000111101 0110011101
0000111110 1110001101
0000111101 0110011101
1001000110 1000010100
1001111101 1011100111
1010010100 0100001001
0000111101 0110011101
0010100100 1010101010

no

no

0010100101 0111001000
1010100000 1010101010
0001001101 0011000010
1110011011 0111100111
0010100010 1011000011
0011100100 1010101010
0011100010 1011000011
0111000010 1011000110
0101011011 0000010100
1001000110 1000000111
0011100101 0011111000
0011100101 0011111000
0000111101 0110011101
0000111110 1110001101
0000111101 0110011100
1001000110 1000010101
1001111101 0100001001
1010010100 1011100111
0000111101 0110011101
0010100100 1010101010

0010101101 0111001000
1010100001 1010101010
0001001101 0001000010
1110011011 0101100011
0010100010 1011000011
0011100100 1110101010
0011100011 1011100011
0101010010 1011000110
0101011011 0000010100
1001010110 1000000111
0011100101 0011111000
0011100101 0011111000
0000101101 0111011100
0000111110 1110001101
0000111101 0110011100
1001000110 0000010101
1001111101 0100001001
1010010100 1010100111
0000111101 0110011101
0010100100 1010101010

1.015
3.947
0.452
5.413
0.950
1.337
1.331
1.982
2.035
3.507
1.343
1.343
0.264
0.364
0.358
3.413
3.736
3.871
0.358
0.962

2.674
4.000
0.387
2.082
4.147
5.501
4.334
4.164
0.117
3.044
1.455
1.455
2.792
5.331
2.416
0.123
1.554
3.982
2.422
4.000

18.886
238.322
149.204
596.340

54.851
424.583

83.929

70.472

87.633

72.789

70.868

70.868

25.783
318.746

42.922

80.127

95.968
219.426

42.598

39.849

0.050
0.004
0.007
0.002
0.018
0.002
0.012
0.014
0.011
0.014
0.014
0.014
0.037
0.003
0.023
0.012
0.010
0.005
0.023
0.024

www.tankonyvtar.hu

Table 5.2: Crossover and mutation operators are shown.
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Step 6: The next step is to perform mutation on strings in the intermediate
population.

For bit-wise mutation, we flip a coin with a probability p,, =0.05 for every bit. If the

outcome is true, we alter the bit to 1 or 0 depending on the bit value. With a probability of
0.05, a population size 20, and a string length 20, we can expect to alter a total of about
0.05x20%x20 or 20 bits in the population. Table 5.2 shows the mutated bits in bold
characters in the table. As counted from the table, we have actually altered 16 bits. Figure 6.3
shows the effect of mutation on the intermediate population. In some cases, the mutation ope-
rator changes a point locally and in some other it can bring a large change. The points marked
with a small circle are points in the intermediate population. The points marked with a small
box constitute the new population (obtained after reproduction, crossover, and mutation). It is
interesting to note that if only one bit is mutated in a string, the point is moved along a
particular variable only. Like the crossover operator, the mutation operator has created some
points better and some points worse than the original points. This flexibility enables GA ope-
rators to explore the search space properly before converging to a region prematurely.
Although this requires some extra computation, this flexibility is essential to solve global
optimization problems.

Step 7: The resulting population becomes the new population. We now
evaluate each string as before by first identifying the substrings for each variable and mapping
the decoded values of the substrings in the chosen intervals. This completes one iteration of
genetic algorithms. We increment the generation counter to # =1 and proceed to Step 3 for
the next iteration. The new population after one iteration of GAs is shown in Figure 5.3
(marked with empty boxes). The figure shows that in one iteration, some good points have
been found. Table 5.2 also shows the fitness values and objective function values of the new
population members.

The average fitness of the new population is calculated to be 0.015, a remarkable
improvement from that in the initial population (recall that the average in the initial
population was 0.008).

Mutation Operation

I-,. aQ AlflEJ‘ crdé’sover
3:‘ 9 0 After Mutation.
< g gﬂ*ﬂ
e & . R
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8 - . 1
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2| ' ¥ ]
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Figure 5.3.: The population after mutation operation. Some points do not get mutated and remain unaltered. The best
point in the population has a function value 18.886 and the average function value of the population is 140.210, an
improvement of over 60 per cent.
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The best point in this population is found to have a fitness equal to 0.050, which is also better
than that in the initial population (0.024). This process continues until the maximum
allowable generation is reached or some other termination criterion is met. The population
after 25 generation is shown in Figure 5.4. At this generation, the best point is found to be

(3.003,1.994)" with a function value 0.001. The fitness value at this point is equal to 0.999

and the average population fitness of the population is 0.474. The figure shows how points are
clustered around the true minimum of the function in this generation. A few inferior points are
still found in the plot. They are the result of some unsuccessful crossover events. We also
observe that the total number of function evaluations required to obtain this solution is
0.8x20x 26 or 416 (including the evaluations of the initial population).

Population at generation 30

i ——— ‘ -
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N i ---- B50.0
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Figure 5.4.: All 20 points in the population at generation 25 shown on the contour plot of the objectivefunction. The
figure shows that most points are clustered around the true minimum.

In order to show the efficiency of GAs in arriving at a point close to the true optimum, we
perform two more simulations starting with different initial populations. Figure 6.5 shows
how the function value of the best point in a population reduces with generation number.
Although all three runs have a different initial best point, they quickly converge to a solution
close to the true optimum (recall that the optimum point has a function value equal to zero).

Population best function value

10 15 20 25 30
Generation number

Figure 5.5: The function value of the best point in the population for three independent GA runs. All runs quickly
converge to a point near the true optimum.
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In order to illustrate the schema processing through genetic operators, we investigate the
growth of a particular schema H = (0*...* *_.%). This schema represents all points in the
range 0 <x, <3. The optimum point lies in this region. With reference to Equation (6.3), we
observe that the order, defining length, and the fitness of the schema are such that it is a buil-
ding block. This schema contains more good points than it's competitor H¢ = (1%...% * .. %)
which represents the range 3<x, <6. According to Equation (6.3), the schema H must
increase exponentially due to the action of genetic operators. We observe that in the random

initial population the schema H has nine strings and the schema H¢ has 11 strings. At the end
of one generation, the population has 14 strings representing the schema H and only six

strings representing the schema H . We may also investigate other interesting regions in the
search space and observe their growth in terms of the number of representative points in the
population. Other low-order and above-average schemata are also processed similarly and are
combined to form higher-order and good schemata. This processing of several schemata
happens in parallel without any extra book-keeping (Goldberg, 1989). Eventually, this
processing forms the optimum or a near-optimum point.

5.2. References

[5.11 Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, Mass.: Addison-Wesley.

5.3. Questions

1. How does a Genetic algorithm work? What are the main operators?
2. What is the aim of the crossover operator?
3. What are the advantages/disadvantages of GAs?
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6. MULTI-CRITERION OPTIMIZATION

As the name suggests, a multi-objective optimization problem (MOOP) deals with more than
one objective function. In most practical decision-making problems, multiple objectives or
multiple criteria are evident. Because of a lack of suitable solution methodologies, an MOOP
has been mostly cast and solved as a single objective optimization problem in the past. How-
ever, there exist a number of fundamental differences between the working principles of sin-
gle and multi-objective optimization algorithms. In a single-objective optimization problem,
the task is to find one solution (except in some specific multi-modal optimization problems,
where multiple optimal solutions are sought) which optimizes the sole objective function.
Extending the idea to multi-objective optimization, it may be wrongly assumed that the task
in a multi-objective optimization is to find an optimal solution corresponding to each objec-
tive function. In this chapter, we will discuss the principles of multi-objective optimization
and present optimality conditions for any solution to be optimal in the presence of multiple
objectives.

6.1. Multi-Objective Optimization Problem

A multi-objective optimization problem has a number of objective functions which are to be
minimized or maximized. As in the single-objective optimization problem, here too the prob-
lem usually has a number of constraints which any feasible solution (including the optimal
solution) must satisfy. In the following, we state the multi-objective optimization problem
(MOQOP) in its general form:

min/max — fm(%), m=12.., M
subject to:
gix) 20,j=12, ..,J; (6.1)
hi(x) =0 k=12 .., K
;(,-(L) <z S;(i(w i=12 ..,n

A solution x is a vector of n decision variables: X = ( 71, 72 .... z»)". The last set of constraints
are called variable bounds, restricting each decision variable y; to take value within a lower
)(,-(L) and an upper )(i(U) bound. These bounds constitute a decision variable space D, or simply
the decision space. Throughout this chapter, we use the terms point and solution interchange-
ably to mean a solution vector x. Associated with the problem are J inequality and K equality
constraints. The terms gj(x) and hi(x) are called constraint functions. The inequality con-
straints are treated as ‘greater-than-equal-to’ types, although a ‘less-than-equal-to’ type in-
equality constraint is also taken care of in the above formulation. In the latter case, the con-
straint must be converted into a ‘greater-than-equal-to’ type constraint by multiplying the
constraint function by -1 (Deb 1995). A solution x that does not satisfy all of the (J + K) con-
straints and all of the 2N variable bounds stated above is called an infeasible solution. On the
other hand, if any solution x satisfies all constraints and variable bounds, it is known as a
feasible solution. Therefore, we realize that in the presence of constraints, the entire decision
variable space D need not be feasible. The set of all feasible solutions is called the feasible

© Gyorgy Gyurecz, OE www.tankonyvtar.hu




Multi-Criterion Optimization 63

region, or S. In this script, sometimes we will refer to the feasible region as simply the search
space.
There are M objective functions f{x) = (fi(x), f>(x), ... fur(x))" considered in the above formula-
tion. Each objective function can be either minimized or maximized. The duality principle
(Deb,1995, Rao, Reklaitis et al.) in the context of optimization, suggests that we can convert a
maximization problem into a minimization one by multiplying the objective function by -1.
The duality principle has made the task of handling mixed type of objectives much easier.
Many optimization algorithms are developed to solve only one type of optimization problems,
such as e.g. minimization problems. When an objective is required to be maximized by using
such an algorithm, the duality principle can be used to transform the original objective for
maximization into an objective for minimization.
Although there is a difference in the way that a criterion function and an objective function is
defined (Chankong), in a broad sense we treat them here as identical. One of the striking dif-
ferences between single-objective and multi-objective optimization is that in multi-objective
optimization the objective functions constitute a multi-dimensional space, in addition to the
usual decision variable space.
This additional space is called the objective space Z. For each solution x in the decision varia-
ble space, there exists a point in the objective space, denoted by f(x) = z = (z,, z,, wz)’. The
mapping takes place between an n dimensional solution vector and an M-dimensional objec-
tive vector. Figure 6.1 illustrates these two spaces and a mapping between them.

3

Decision space Objective space

£, A

Figure 6.1.: Representation of the decision variable space
and the corresponding objective space

Multi-objective optimization is sometimes referred to as vector optimization, because a vector
of objectives, instead of a single objective, is optimized.

6.2. Principles of Multi-Objective Optimization

We illustrate the principles of multi-objective optimization through an airline routing prob-
lem. We all are familiar with the intermediate stopovers that most airlines force us to take,
particularly when flying long distance. Airlines try different strategies to compromise on the
number of intermediate stopovers and earn a large business mileage by introducing ‘direct’
flights. Let us take a look at a typical, albeit hypothetical, airline routing for some cities in the
United States of America, as shown in Figure 6.2.
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Figure 6.2.: A typical network of airline routes showing hub-like connections

If we look carefully, it is evident that there are two main ‘hubs’ (Los Angeles and New York)
for this airline. If these two hubs are one’s cities of origin and destination, the traveler is
lucky. This is because there are likely to be densely packed schedules of flights between these
two cities. However, if one has to travel between some other cities, let us say between Denver
and Houston, there is no direct flight. The passenger has to travel to one of these hubs and
then take more flights from there to reach the destination. In the Denver-Houston case, one
has to fly to Los Angeles, fly on to New York and then make the final lap to Houston.

To an airline, such modular networks of routes is easiest to maintain and coordinate. Better
service facilities and ground staff need only be maintained at the hubs, instead of at all air-
ports. Although one then travels longer distance than the actual geographical distance between
the cities of origin and destination, this helps an airline to reduce the cost of its operation.
Such a solution is ideal from the airline’s point of view, but not so convenient from the point
of view of a passenger’s comfort. However, the situation is not that biased against the passen-
ger’s point of view either. By reducing the cost of operation, the airline is probably providing
a cheaper ticket. However, if comfort or convenience is the only consideration to a passenger,
the latter would like to have a network of routes which would be entirely different to that
shown in Figure 6.1.

A hypothetical routing is shown in Figure 6.2. In such a network, any two airports would be
connected by a route, thereby allowing a direct flight between all airports. Since the operation
cost for such a scenario will be exorbitantly high, the cost of flying with such a network
would also be high.

Thus, we see a trade-off between two objectives in the above problem-cost versus conveni-
ence. A less-costly flight is likely to have more intermediate stopovers causing more inconve-
nience to a passenger, while a high-comfort flight is likely to have direct routes, thus causing
an expensive ticket. The important matter is that between any two arbitrary cities in the first
map (which resembles the routing of most airlines) there does
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Figure 6.3.: A hypothetical (but convenient) airline routing

not exist a flight which is less costly as well as being largely convenient. If there was, that
would have been the only solution to this problem and nobody would have complained about
paying more or wasting time by using a ‘hopping’ flight. The above two solutions of a hub-
like network of routes and a totally connected network of routes are two extreme solutions to
this two-objective optimization problem. There exist many other compromised solutions
which have lesser hub-like network of routes and more expensive flights than the solution
shown in Figure 6.1.

Innovative airlines are constantly on the lookout for such compromises and in the process
making the network of routes a bit less hub-like, so giving the passengers a bit more conveni-
ence. The ‘bottom-line’ of the above discussion is that when multiple conflicting objectives
are important, there cannot be a single optimum solution which simultaneously optimizes all
objectives. The resulting outcome is a set of optimal solutions with a varying degree of objec-
tive values. In the following subsection, we will make this qualitative idea more quantitative
by discussing a simple engineering design problem.

6.3. Ilustrating Pareto-Optimal Solutions

We take a more concrete engineering design problem here to illustrate the concept of Pareto-
optimal solutions. Let us consider a cantilever design problem (Figure 6.4) with two decision
variables, i.e. diameter (d) and / length

NN

Figure 6.4.: A schematic of a cantilever beam.

The beam has to carry an end load P. Let us also consider two conflicting objectives of de-
sign, i.e. minimization of weight f; and minimization of end deflection f,. The first objective
will resort to an optimum solution having the smaller dimensions of d and /, so that the overall
weight of the beam is minimum. Since the dimensions are small, the beam will not be ade-
quately rigid and the end deflection of the beam will be large. On the other hand, if the beam
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is minimized for end deflection, the dimensions of the beam are expected to be large, thereby
making the weight of the beam large. For our discussion, we consider two constraints: the
developed maximum stress Oy is less than the allowable strength o; and the end deflection 6
is smaller than a specified limit ;... With all of the above considerations, the following two-
objective optimization problem is formulated as follows:

min f,(d, 1) = panzl
. 64P13
min f,(d,l) =6 = 3End®
subject to
Omax < Sy
d <dma,
where the maximum stress is calculated as follows:
32P!

Omax = d3

The following parameter values are used:

p = 7800 kg/m’, P =1kN, E=210GPa,
Sy=300 MPa, Omax = Imm.

The left plot in Figure 6.5. marks the feasible decision variable space in the overall search
space enclosed by 10 < d < 50mm and 200 </ < 1000mm. It is clear that all solutions in the
rectangular decision space are feasible. Every feasible solution in this space can be mapped to
a solution in the feasible objective space shown in the right plot. The correspondence of a
point in the left figure with that in the right figure is also shown.
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Figure 6.5.: The feasible decision variable space (left)
and the feasible objective space (right).

This figure shows many solutions trading-off differently between the two objectives. Any two
solutions can be picked from the feasible objective space and compared. For some pairs of
solutions, it can be observed that one solution is better than the other objectives. For certain
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other pairs, it can be observed that one solution is better than the other in one objective, but is
worse in the second objective. In order to establish which solution(s) are optimal with respect
to both objectives, let us hand-pick few solutions from the search space. Figure 6.6 is drawn
with many such solutions, and five of these solutions (marked A to E) are presented in Table
1. Of these solutions, the minimum weight solution (4) has a diameter of 18.94 mm, while the
minimum deflection solution (D) has a diameter of 50 mm. It is clear that solution 4 has a
smaller weight, but has a larger end-deflection than solution D. Hence, none of these two so-
lutions can be said to be better than the other with respect to both objectives. When this hap-
pens between two solutions, they are called non-dominated solutions. 1f both objectives are
equally important, one cannot say, for sure, which of these two solutions is better with respect
to both objectives. Two other similar solutions (B and C) are also shown in the figure and in
the tables. Of these four solutions (A to D), any pair of solutions can be compared with respect
to both objectives. Superiority of one over the other cannot be established with both objec-
tives in mind. There exist many such solutions in the search space.

For clarity, these solutions are joined with a curve in the figure. All solutions lying on this
curve are special in the context of multi-objective optimization and are called Pareto-optimal
solutions. The curve formed by joining these solutions is known as a Pareto-optimal front.
The same Pareto-optimal front is also marked on the right plot of Figure 6.5 by a continuous
curve. It is interesting to observe that this front lies in the bottom-left corner of the search
space for problems where all objectives are to be minimized.

d ! Weight Deflection
Solution (mm) (mm) (kg) (mm)
A 18.94  200.00 0.44 2.04
B 21.24  200.00 0.58 1.18
C 34.19  200.00 1.43 0.19
D 50.00 200.00 3.06 0.04
E 33.02 362.49 242 1.31

Table 6.1 Five solutions for the cantilever design problem.

It is important to note that the feasible objective space not only contains Pareto-optimal solu-
tions, but also solutions that are not optimal. The entire feasible search space can be divided
into two sets of solutions - a Pareto-optimal and a non-Pareto-optimal set. Consider solution £
in Figure 6.6 and also in Table 1.
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Figure 6.6.: Four Pareto-optimal solutions and one non-optimal solution.

By comparing this with solution C, we observe that the latter is better than solution £ in both
objectives. Since solution £ has a larger weight and a larger end-deflection than solution C,
the latter solution is clearly the better of the two. Thus, solution E is a sub-optimal solution
and is of no interest to the user. When this happens in comparison of two solutions, solution C
is said to dominate solution E or that solution E is dominated by solution C. There exist many
such solutions in the search space which can be dominated by at least one solution from the
Pareto-optimal set.

In other words, there exists at least one solution in the Pareto-optimal set, which will be better
than any non-Pareto-optimal solution. It is clear from the above discussion that in multi-
objective optimization the task is to find the Pareto-optimal solutions.

Instead of considering the entire search space for finding the Pareto- and non-Pareto- optimal
sets, such a division based on domination can also be made for a finite set of solutions P cho-
sen from the search space. Using a pair-wise comparison as above, one can divide the set P
into two non-overlapping sets P; and P,, such that P; contains all solutions that do not domi-
nate each other and at least one solution in P; dominates any solution in P,. The set P, is
called the non-dominated set, while the set P» is called the dominated set. There is an interest-
ing observation about dominated and non-dominated sets, which is worth mentioning here.
Let us compare solutions D and E. Solution D is better in the second objective but is worse in
the first objective compared to solution E. Thus, in the absence of solutions 4, B, C, and any
other non-dominated solution, we would be tempted to put solution £ in the same group with
solution D. However, the presence of solution C establishes the fact that solutions C and D are
non-dominated with respect to each other, while solution £ is a dominated solution. Thus, the
non-dominated set must be collectively compared with any solution x for establishing whether
the latter solution belongs to the non-dominated set or not. Specifically, the following two
conditions must be true for a non-dominated set P;:

1. Any two solutions of P; must be non-dominated with respect to each other.
2. Any solution not belonging to P; is dominated by at least one member of P;.
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6.4. Objectives in Multi-Objective Optimization

It is clear from the above discussion that, in principle, the search space in the context of mul-
tiple objectives can be divided into two non-overlapping regions, namely one which is optim-
al and one which is non-optimal. Although a two-objective problem is illustrated above, this
is also true in problems with more than two objectives. In the case of conflicting objectives,
usually the set of optimal solutions contains more than one solution. Figure 6.6 shows a num-
ber of such Pareto-optimal solutions denoted by circles.

In the presence of multiple Pareto-optimal solutions, it is difficult to prefer one solution over
the other without any further information about the problem. If higher-level information is
satisfactorily available, this can be used to make a biased search. However, in the absence of
any such information, all Pareto-optimal solutions are equally important. Hence, in the light
of the ideal approach, it is important to find as many Pareto-optimal solutions as possible in a
problem. Thus, it can be conjectured that there are two goals in a multi-objective optimiza-
tion:

1. To find a set of solutions as close as possible to the Pareto-optimal front.
2. To find a set of solutions as diverse as possible.

The first goal is mandatory in any optimization task. Converging to a set of solutions which
are not close to the true optimal set of solutions is not desirable. It is only when solutions
converge close to the true optimal solutions that one can be assured of their near-optimality
properties. This goal of multi-objective optimization is common to the similar optimality goal
in a single-objective optimization.

On the other hand, the second goal is entirely specific to multi-objective optimization. In ad-
dition to being converged close to the Pareto-optimal front, they must also be sparsely spaced
in the Pareto-optimal region. Only with a diverse set of solutions, can we be assured of having
a good set of trade-off solutions among objectives. Since MOEAs deal with two spaces - deci-
sion variable space and objective space ‘diversity’ among solutions can be defined in both of
these spaces. For example, two solutions can be said to be diverse in the decision variable
space if their Euclidean distance in the decision variable space is large. Similarly, two solu-
tions are diverse in the objective space, if their Euclidean distance in the objective space is
large. Although in most problems diversity in one space usually means diversity in the other
space, this may not be so in all problems. In such complex and nonlinear problems, it is then
the task to find a set of solutions having a good diversity in the desired space.

6.5. Non-Conflicting Objectives

It is worth pointing out that there exist multiple Pareto- optimal solutions in a problem only if
the objectives are conflicting to each other. If the objectives are not conflicting to each other,
the cardinality of the Pareto-optimal set is one. This means that the minimum solution corres-
ponding to any objective function is the same. For example, in the context of the cantilever
design problem, if one is interested in minimizing the end-deflection & and minimizing the
maximum developed stress in the beam, o, the feasible objective space is different.
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Figure 6.7.: End deflection and developed maximum stress are two non-conflicting objectives leading to one optimal
solution (A).

Figure 6.7 shows that the Pareto-optimal front reduces to a single solution (solution 4 marked
on the figure). A little thought will reveal that the minimum end-deflection happens for the
most rigid beam with the largest possible diameter. Since this beam also corresponds to the
smallest developed stress, this solution also corresponds to the minimum-stress solution. In
certain problems, it may not be obvious that the objectives are not conflicting to each other. In
such combinations of objectives, the resulting Pareto-optimal set will contain only one optim-
al solution.
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6.7. Questions

1. Explain the principles of multi-objective optimization!
2. What are the Pareto-optimal solutions?
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7. OPTIMIZATION OF PRODUCTS AND MACHINE COMPONENTS

First we have introduced the basic element and formulations of an optimization problem and
then discussed the solution techniques. In this chapter we are coming to the definition of the
main problem classes and introducing the role and place of the different optimization tech-
niques in the design process. Through industrial examples illustrates the power of the used
methods solving mainly mechanical engineering problems.

The complex industrial optimization problems generally include behavior constraints, which
can be evaluated only with numerical structural analysis techniques (Finite Element Method
or Boundary Element Method). The studied problems in this chapter can be calculated using
numerical techniques both for structural analysis and for optimization.

7.1. The place and role of the optimization in the design process

The design process may be divided into four stages:

1. Formulation of functional requirements, which is the first step in any design procedure.
In some cases the functional requirements are not explicitly stated beforehand, and the de-
signer has to investigate and take part in formulating these requirements. However, functional
requirements are often established already before the engineer enters the design process.

2. The conceptual design stage, characterized by creativity, and engineering judgment of the
designer, is a critical part of the design process. It deals with the overall planning of a system
to serve its functional purposes. At this stage, the designer experiences the greatest challenges
as well as chances of success or failure. Selection of the overall topology, type of structure,
and materials are some of the decisions made by the designer at the conceptual design stage.
In general, this part of the design process cannot be performed by a computer.

3. Optimization. Within a selected concept there may be many possible designs that satisfy
the functional requirements, and a "trial-and-error" procedure may be employed to choose the
optimal design. The computer is most suitable to carry out this part of using optimization me-
thods to search for the optimal solutions. Thus, optimization in the present context is an au-
tomated design procedure giving the optimal values of certain design quantities, considering
desired criteria and constraints.

4. Detailing. After completing the optimization stage, the results obtained must be checked
and modified if necessary. In the final detailing stage, engineering judgment and experience
are required, and it is again usually necessary for the designer to take part in the decision-
making process.

Iterative procedures for the four stages are often required before the final solution is achieved,
because the planning process in not a linear sequence. The portion of the structural design
process that can be optimized automatically has been considerably increased in recent years.
Optimization procedures are usually used to solve specific subproblems and the field of auto-
mated design is strongly connected with computer-aided design.
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The optimization stage can also be divided into steps:

1. Formulating the optimization problem, choosing the design variables and design pa-

rameters.

Taking the assumptions.

Defining the goal function and the optimization constraints

Choosing the suitable optimization algorithm, and defining the convergence condi-

tions.

5. Performing the calculation.

6. Comparing the results with the analytical ones (if exist), taking into the consideration
the effect of the assumption.

AW

The available methods of optimization may be subdivided into two categories:

Analytical methods are most suited for such fundamental studies of single structural compo-
nents, but they are not able to handle larger structural systems. In analytic optimization prob-
lems the structural design is represented by a number of unknown functions and the goal is to
find the form of these functions.

Numerical methods, which are usually employing a branch in the field of numerical mathe-
matics called programming methods. The recent developments in this branch are closely re-
lated to the rapid growth in computing capacities affected by the development of computers.
In the numerical methods, a near optimal design is automatically generated in an iterative
manner. An initial guess is used as starting point for a systematic search for better designs.
The search is terminated when certain criteria are satisfied; indicating that the current design
is sufficiently close to the true optimum. Problems solved by numerical methods are called
finite optimization problems. This is due to the fact that they can be formulated by a finite
number of variables. The modern CAE systems inherit not only the 3D geometry modeler but
numerical structural analysis and numerical optimization module too, they are suitable for
supporting the numerical optimization techniques.

7.2 The main types of optimization tasks, incorporating them into the design
process

The simplest task of the engineering optimization is sizing optimization, such as optimization
of truss structures, where the topology and the material of the bars are considered as design
parameters (Figure 7.1). The continuous design variables are the cross-sectional dimensions
of the bars; they can change between his lower and upper limits because of the manufactura-
bility.
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Figure 7.1. abra: Sizing optimization of the 5 truss bar problem

In some cases, partly the surface of the machine part can be varied freely considering the pro-
duction conditions. This is often happens by casted parts, when the changeable surfaces are
not connected to other machine parts. In such cases shape optimization can be used advanta-
geously. Considering a simple supported beam (Figure 7.2), so that the allowable stresses do
not exceed the limit. Design variables can only change the bottom contour of the structure and
all other properties are set to design parameter. The optimization result (the optimized con-
tour) depends on the number of the design variables. In general, the more design variable
means that we can get more information about the optimal shape, but it can lead to numerical
instability, which eventually results wavy shape, which is completely useless.

Figure 7.2.: Simply supported beam (starting geometry)

Finally, the most common formulation is the topology optimization. We can apply this tech-
nique for optimizing beams and for 2D and 3D solid geometries too. If we allow that the cross
sections of the bars become zero, even more bars will disappear in the structure. An example
is the design of pillars for high-voltage transmission lines (Fig. 7.3). The figure shows a
ruined structure.
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Figure 7.3.: Ruined pillar for high-voltage transmission lines

Solving 2D and 3D topology optimization problem first the discretized geometry (Finite ele-
ment mesh) should be created and the elements separated into two sets: the design elements
and the non-design elements. In the non-design region the densities are design parameters and
their values either O (there is a hole in the structure) or 1 (there should be material). In the
design region every element density is coupled with one design variable. After the topology
optimization we have a material density for the design domain, which (generally) represents
geometry with maximum stiffness (Figure 7.4.). More detailed information about the topology
optimization will be presented later.

Oensitiss

@npll-:m-::e = 33334  Pendllzaten = 3.0

Figure 7.4.: Solving two dimensional topology optimization problems [www.topopt.dtu.dk]
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7.3. The optimization examples in the fields of mechanical engineering

Nowdays in the product development process numerical simulation and optimization tech-
niques are shifted into the earlier design stages, in order to coming the products to market
earlier, reducing the development costs.

It is also worth to notice, that the number of the different modeles (for example for cars) is
much higher than before. It is due to satisfy the changing consumer demands (Figure 7.5.). So
the mass production was invented by Henry Ford is now obsolete.

Number of the
different models

AudiB0 | | Audiquattro | | RS, AudiQ7, A8, S8, A6, S6, RS6,

Audi 80 Audi 100,200 AB allroad quattro, A4, S4, RS4,
Audi 80,90 TT Coupé, TT Roadster, A3, 83

Figure 7.5.: Number of the different models versus time [www.audi.de]

Applying the new CAE systems, with the integrated simulation tools, the designer have the
possibility to check the functionality of large number of design ideas parallel. No complicated
interfaces and no special simulation tools are needed. Also the number of very costly and
time-consuming physical tests can be reduced. (Figure 7.6.).
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Figure 7.6.: The advantages of using the integrated CAE tools

This technique also allows the designer to use the built in automatic or semi-automatic opti-
mization tools, which increases the probability of finding a better design In this way the struc-
tural optimization is linked deeply into the design process.

In the industrial praxis, first the topology optimization techniques are used in the early design
stages (Figure 7.7. upper left: defining topology optimization problem showing the design and
non-design regions. Figure 7.7. upper right: the result of the topology optimization step).
Based on the results of the topology optimization a detailed geometry (CAD model) will be
produced by the design engineer which undergoes a shape optimization procedure (Figure 7.7.
lower left: the starting geometry for shape optimization, Figure 7.7. lower right: result after
shape optimization).

Before Topology Optimization After Topology Optimization

Reconstructed CAD Model After Shape Optimization

Figure 7.7.: Applying topology and shape optimization of a machine part
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Similar optimization application was solved by FE-DESIGN Company using the Tosca sys-
tem (Figure 7.8.). Using Tosca optimization system large numbers of problems have been
solved in the field of automotive industry and also lot of other problems has been solved effi-

ciently.
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FE-Model

CAD Definition of the Design

Space
After the Topology Optimization

Integrated Topology and Shape Optimization
in the Product Development Process

Optimized Part in the
CAD System

After the Shape Optimization

Figure 7.8.: Integration of topology and shape optimization in the product development process with Tosca
[FE-DESIGN]

Questions

How can we define a sizing optimization problem?

What are the characteristic properties of a sizing optimization problem?
What are the characteristic properties of a shape optimization problem?
What are the characteristic properties of a topology optimization problem?

What is the most relevan design variable in case of solving 2D and 3D topology optimiza-

tion problem?
Why it is important to minimize the “time to market” in the design process?

How can we integrate the topology and shape optimization in an industrial design
process? What do you think, which approach should be applied in the earlier design

stage?
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8. GROUPING AND EVALUATION OF THE METHODS FOR
SOLVING ENGINEERING OPTIMIZATION TASKS

Because of the diversity of the challenges in engineering, a universal solutions technique can-
not be applied. It may be difficult for the reader to find the right optimization method for the
problem to be solved. Therefore, in this chapter we will try to review and categorize the pre-
sented methods based on the classification presented in the previous chapters, but from the
perspective of the tasks to be solved. In some cases, additional methods or examples will be
presented too.

8.1. Optimization tasks containing only geometric conditions

We can find such optimization tasks during activities of engineering or product design profes-
sionals, where the optimization criteria can also be linked to purely geometric quantities. In
this case it’s not necessary to solve these computationally intensive real physical processes
(for example the numerical solution of partial differential equations).

An optimization criteria is for example, optimizing the external shape of a bottle (or compar-
ing various shape variants), such as the volume of the bottle has to be a certain given value, or
between a given lower and upper limit. An equally important geometrical problem is the de-
sign of a packaging with minimum material need in case of a complex-shaped part, but with
given three-dimensional geometry.

Otherwise, the approximate solution of a problem can be obtained in a way that the simulation
is left out. The uniform placement of a car seat’s heating element can be approximately ex-
amined without the solution of the transient thermal problem, and the solution of certain opti-
cal functions (optimization of a simple beam lamp, examination of an object’s shadow) can
also be approximated on a geometric basis.

The integrated CAE systems are suitable for solving these kind of tasks, where the optimiza-
tion criteria can be defined by equations, such as the Pro/Engineer, Catia, or SolidWorks sys-
tems.

To illustrate the foregoing, we have created an interactive animation, which demonstrates the
geometric optimization task through a rotating shaft weight balancing.

8.2. Solving optimization tasks using heuristic optimization procedure

In a design practice sometimes it is necessary to achieve satisfactory results, even in a rela-
tively short period of time, and in the case of a complicated optimization task. The right result
means a more favorable result than the initial construction, even if we cannot prove, that the
resulting solution is global or local optimization. Such solving methods are called "quick and
dirty" procedures. These procedures have a relatively small mathematical apparatus and a
wide range of applications. Their application can handle the continuous and discrete design
variable problems, and other such cases, when the objective function the optimization criteria
is not continuous (for example the optimization on a discontinuous cost function.)

This group also includes a traditional method, also used to minimize volume, that selects the
active from the optimization conditions (should be equal to the number of the design va-
riables), and it results in an equation to determine the optimum value of the design variables.
In case the active constraints can’t be selected, it’s possible that in the optimum some con-
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straints will not be satisfied, so when this method is used, the optimal point always has to be
placed back into the not selected optimization criteria. If, however, all conditions are met, you
might want to evaluate the objective function as well, and if it’s better than the best so far,
then it can be considered an "optimal" solution. If we cannot examine the combination of all
constraints, then it won’t be sure, that our solution will be the optimum. The method also
won’t give the optimum, if in the optimum there are fewer active constraints than the number
of design variables. The method can be used more favorably in cases of linear objective func-
tion and linear constraints, or to solve small tasks; in other cases, the mathematical program-
ming method is recommended. This method is beneficial, if there are relatively few con-
straints, or the active can easily be selected. The geometric interpretation of the procedure in
terms of design variables is the following: through the equations to be solved determine the
hyper-plane intersections of the optimization criteria, some of these are on the edge of the
allowable range (in which case we accept the solution if the objective function value is posi-
tive), others are out of range (in case we reject this point). The former statement is also based
on this, that this procedure does not find the extreme if for example the optimum is inside the
permissible range, or on the edge, but not in the intersection of the criteria. But in many cases
even if the procedure does not find the optimum, it’s able to provide a significantly better re-
sult than the initial case.

With the increase in the number of variables it is increasingly difficult to determine the global
optimization. It’s often beneficial using an intermediate step instead of a solution, so we can
manage to reduce the complexity of the task and use the "simple low limit 'technique. Using
this application we are able to estimate the size of each member in the objective function (typ-
ically this is used in case of a cost function task consisting of many members), and the ones
whose role is small can be neglected. In this way one can create a lower (or upper) limit func-
tion, which extreme can be more easily determined than the objective function. The resulting
optimum value substituted back into the original and alternative objective function, and the
used approximation error can also be estimated. Through the analysis of the monotonicity
test it’s examined if the function respect of the variables is ascending or descending. During
the monotonicity test of the objective function, the restrictive conditions also taken into ac-
count, the monotonicity of certain variables is often clearly identifiable. Thereafter, it’s suffi-
cient to take the general procedures for the remaining design variables, i.e. the dimension of
the problem may be reduced.

Another simple optimum calculation approximation method is the definition of the partial
optimum. In doing so, we can optimize according to the design variables, while we don’t
change the value of the other design variables. This way always a design variable task needs
to be solved, which can be solved using any of the previously explained line side search pro-
cedures. As long as we’ve performed this task for all design variables, we’ll get an approxi-
mation of the optimum, but if the calculation options allow, the procedure can be repeated in
order to clarify the result.

Optimization procedures based on the basics of the probability calculations, for example the
Monte-Carlo procedure (the simplest), which randomly selects a point in the #» dimensional
rectangular box located in the space of design variables, and the optimization conditions and
the objective function must be evaluated here. The method is applicable to treat continuous
and discrete design variables, continuous and discontinuous objective function, and optimiza-
tion conditions. The method fairly easily can be connected to any type of structure analysis
program, since the program is known as a ,,black box”. Another advantage is, that the method
with a given probability (which is nearing 100% by increasing the selected points) converges
to the global optimum. A disadvantage is however, that the objective function and constraints
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must be evaluated in many points of the design variables space, therefore it has extensive
computational requirements, and however it can be perfectly parallelized on multiprocessor or
multicore machines. It should be used in tasks, where the numbers of design variables are
small, and where the objective function and the constraints are simple analytic functions of
the design variables. The method also applies other optimization procedures, for example in
the case of the previously described genetic procedures, and the simulated annealing algo-
rithm can also be considered as the enhancement of the Monte Carlo proceedings.

8.3. Optimality Criteria (OC) method for solving stress concentration problems

It’s common to establish criteria in this method, which is met at the optimum level, and that’s
what we try to achieve. The OC methods are only suitable of solving specific tasks, but at the
same time are easily programmable and have quick results. Particularly beneficial for these
methods, that in most cases the calculation time doesn’t increases with the growth of the de-
sign variables, and that it usually doesn’t include computationally costly gradient calculations.
One example of this is the so-called Fully Stress Design, which presumes, that you can reach
the optimal solution, if in every element the stress reaches the limit stress value for at least
one loading case. Other criteria can include displacement, stability, etc. conditions. The strat-
egy for solving these cases consists of the repeated analysis of the structure, so that at the end
of each analysis, the construction is changed by simple rules based on special physical proper-
ties. From a variety of OC methods we highlight one, which is probably the widest spread in
the industry, and that is the Sauter algorithm, which is part of the TOSCA system.

The Sauter algorithm [1] is based on biological analogy: found out observing in a prevailing
wind the growth of trees and branches, that the annual rings are not circularly structured, but
that they become thicker where there is greater tension in the tree branch. This way the tree
strengthens (adds material) the areas with higher stress, in order to prevent the breakage of
tree branches.

This observation provides a basis for development of the geometry modification strategy, per-
fectly suitable for dismantling stress peaks bound to finite-element net, which modifies the
geometry of the structure based on the following algorithm:

e The of node location’s changing direction is always perpendicular to the surface, or a pre-

defined direction;

e It’s extent is determined by the difference of the limit stress and local stress (where the
local stress is higher, material is added to the structure, where smaller, it’s taken away):

K
csp
O-red O-reff

AX, =S

Sign(oﬁp - O'ref) (8.1)

where AX, is the n-th finite element node location change in the required (surface normal

. . . CSP .
or direct set) direction, S, x constant parameters, P state of stress generated in a node

. . O, :
characterized by reduced stress based on a stress hypothesis, "¢ the required reference
stress.
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Based on stress generated in a given node, the rate of location change of the node in case of
different S, x parameters is shown by Figure 8.1.

A

material is
taken away

material is added

|
reference !

min stress max

Figure 8.1.: Sauter geometry modification algorithm in case of different constants

When this algorithm is executed in each surface variable node of the examined object, then a
new contour is generated. The displacement of the surface nodes leads to deformation of the
finite element mesh, that why before any further structural analysis, the mesh needs to be
adapted to the new shape, or re-generated.

The efficiency of this method is illustrated on a crank optimization task [8.1], where the test
assembly is shown on Figure 8.2. During modeling the bolt pretension, the force from gas
pressure, the mass force and the contact relationship between the components should also be
considered.

Figure 8.2.: The test rod

The Mises stress distribution on the initial geometry is shown (Figure 8.3.). After five itera-
tion steps, the resulting stress distribution becomes significantly better, and it is maximum
value drops to 83% of the original value (Figure 8.4.).
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Figure 8.3.: Mises stress distribution in the initial geometry

Figure 8.4.: Mises stress distribution on the optimized geometry

The achieved stress decreases during the intermediate steps of the iteration are shown on Fig-
ure 8.5.

Maximum Equivalent Stress
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40% 0—\‘_ * & P -&
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ODA) T T T T

0 1 2 3 < 2

Optimization Cycle

Figure 8.5.: Stress maximum in each optimization step
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The advantage of this method is, that approximately during 6 structure analysis CPU time and
during a significant peak stress reduction, a new stress distribution was achieved, which is
also considerably more favorable in terms of fatigue. However a disadvantage is, that after the
finite-element nodes are moved, at the completion of the optimization the changed geometry
data is lost and only the surfaces formed by a finite element mesh (for example in STL for-
mat) can be exported into a CAD program.

84. Mathematical Programming Methods (MP)

The Mathematical Programming Methods (MP) can be widely used for continuous optimiza-
tion problems. They are commonly used mathematical procedures for the determination of the
location of extreme value of multivariable function, also taking into account the constraints
(optimization criteria). The simplest such procedure is the Simplex method [2], which can be
applied for linear objective function and linear restrictive conditions. Solving non-linear tasks
many procedures have been developed, for example the Sequential Linear Programming
(SLP), the Sequential Quadratic Programming Procedure (SQP), the Feasible Direction Me-
thod, etc. In order to determine the next iteration step, the mathematical programming me-
thods usually require the partial derivatives based on the design variables of the objective
function and restrictive conditions. Although capable of solving any problem, at the same
time they require quite a large programming effort, and the computational needs are also sig-
nificant. The MP methods usually guarantee a local extreme value. A great advantage of these
procedures is, that they have a mathematically sound shut-down criteria, which is capable of
measuring how far away from the optimum is the current iteration step. This convergence
criterion is called the Kuhn-Tacker (or Karush-Kuhn-Tacker) criteria.

8.4.1. Lagrange function and the Kuhn-Tucker's criteria
For simplicity consider the optimization task based on the equality of ancillary:

Z= F(X)—)min
hj(X)=O =1,k (8.2)

Let’s deifne the task’s so called Lagrange function:
k
CI)(X,/l):F+Z/1jhj, (8.3)
J=1

where 4, is called the Lagrange's multiplier. Necessary condition of the extreme:

k
D, ity = v =-Y 2,
: = (8.4)
X

=0, j=l.,k = hy(X)=0,j=1,...,k
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The meaning of the equations 8.5 can be explained that the gradient of the objective function
in the optimum can be written as the linear combination of ancillary gradients.

The majority of optimization tasks can be rather formulated by inequality constraints (for ex-
ample the displacement or stress to remain below a maximum value). Terms of inequality
usually labeled with g; can be reformulated with the introduction of auxiliary variables into
equality terms, and similarly the equations for the optimum conditions can be written.

This corresponds to, that X can be a minimum point, as long as in the test point all g; <0

constraints are met, and there is A ;20,50 that
J
VF + E 4,Vg; =0, (8.5)
=1

where j=1,...,J means active constraints.
This is the so called Kuhn-Tucker criteria, which is a necessary condition for local minimum.
It’s also a sufficient criterion in case of convex programming problems.

8.5. Comparing the different methods

If a complicated task, within a short time has to be solved in a way, that it’s enough to pro-
pose a better construct than the starting point, a heuristic procedure can be applied. In case of
certain tasks, where the derivative is not available, but a gradient-free OC procedure can be
well adapted to the task that should be strictly applied, since it’s the most effective way. If the
derivatives can be calculated, either analytically or semi-analytically or at least can be approx-
imated by a finite differential, then the gradient methods are effective. In many cases because
of the large computing time of the gradient methods, a pre-optimization is performed by an
OC procedure (or other suitable technique), from its results the mathematical programming
method for optimization can be started. By the application of the defined good starting point,
the MP algorithm can find the optimum in a few iteration steps. If it’s likely, that the found
optimum is only local, than the calculation should be repeated starting from more (or random-
ly selected) starting points. In case of real, large-scale industrial tasks second-order methods
using derivatives are rarely used, because although they are rapidly converging, but the calcu-
lation of the second-order derivatives is very CPU time intensive.

8.6. References

[8.1] Meske R., Mulfinger F., Warmuth O.: Topology and Shape Optimization of Compo-
nents and Systems with Contact Boundary Conditions NAFEMS Seminar: Modelling
of Assemblies and Joints for FE Analyses April 24 - 25, 2002 Wiesbaden, Germany

[8.2] Haftka, R.T., Kamat, M.P.: Elements of structural optimization. Martinus Nijhoff Pub-
lishers, 1985

8.7. Questions

1. Give an example for geometric optimization task.
What are the characteristics of "quick and dirty" procedures? Give an example of a proce-
dure, that was divided into this group.

3. What are the characteristic of the optimum criterion procedures?
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Give an example of an optimum criterion procedure!

In case of what tasks can the optimum criteria methods be used advantageously?
What are the characteristics of the mathematical programming procedures?
What is the Kuhn-Tucker criterion used for?

Nank
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9. THE ROLE AND METHOD OF SENSITIVITY ANALYSIS;
CASE STUDY

Sensitivity analysis has three fundamental applications in solving optimization problems in
mechanical engineering:

e Certain optimization methods (e.g. gradient methods) mentioned earlier utilize gra-
dient vectors for defining the optimal direction of the iteration

e In contour optimization an import question is what to choose as a design variable. If
we choose too many dimensions, then the task will be unmanageable, on the other
hand, if too few dimensions are selected then we only stand a chance to find a partial
optimum. In the case study presented at the end of the subchapter we demonstrate
how local sensitivity analysis can help to decide if the impact of certain design va-
riables rather designates them to be used as design parameters.

e Sensitivity values also give useful guidance if optimization is performed manually, or
if a heuristic approach is applied for geometry selection.

Sensitivity calculation is considered as the definition/obtainment of the objective function and
its partial derivative functions along its optimality design variables. There is a multitude of
methods to obtain these. If the above functions can be given in a closed analytic form, then
they can be calculated either manually or using a mathematical programme package (Derive,
Wolfram Mathematica, etc.) and evaluated using the actual values of the design variables.
This is nevertheless rare in mechanical engineering applications. If these functions are not
available in a closed form and if we can modify the source code of the software used for
structural analysis then in most of the cases a semi-analytic or numerical calculus is recom-
mended. Basically, as we move from analytic functions to numerical calculus we get less and
less precise solutions (resulting in more iteration steps when for example searching for optim-
al direction), but in these cases we can obtain a general method which can be simply pro-
grammed as an external black box to be used for any structural analysis code.

In the case of finite differences based sensitivity analysis first the structural analysis has to be
performed for the given (x,,xz,...,x,) design space coordinates. This analysis can be for exam-
ple a FEM analysis of linear statics, Eigenfrequency analysis, non-linear statics, thermal dis-
sipation or hydrodynamic analysis or the combination of these. In the next step a sufficiently
small Ax value has to be chosen with to which we perturbate all of the n coordinates of the
design variable in order to get n new design variables to run the structural analysis on. Before
using such a technique it is recommended to assure that the design variables are in a similar
order of magnitude.

If these results are ready, then the following relationships can define sensitivities of the objec-
tive function and the optimality conditions:

ﬁF(xl,xz,...,xn) N AF(xl,xz,...,xn) _ F(xl,xz,...,(xl. +Ax),...,xn)—F(xl,xz,...,xi,xn)

& A, Ax; ©9.1)
ﬁg(xl,xz,...,xn) N Ag(xl,xz,...,xn) _ g(xl,xz,...,(xi +Ax),...,xn)—g(xl,xz,...,xi,xn)

1 1 1
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We note here that this means that for any analyzed point of location n+1 structural analyses
have to be undertaken, which can be rather time consuming. Nonetheless, we might be aware
that industrial optimization tasks are usually solved by super-computing tools. Quite advanta-
geously, developments in microchips resulted in today’s state-of-the-art CPU-s being multi-
core, multi-thread units, providing a good capability for symmetric, parallel task solutions on
an average PC’s processor. A further option is to set up a cluster of such PCs which can pro-
vide a quite strong means of solving optimization problems. Thus, numerical sensitivity anal-
ysis (being the most time consuming task of the optimization process) can be performed effi-
ciently. Then, the n+1 structural analyses is fully independent and can be solved in the run-
time of one structural analysis (assuming the availability of the necessary number of CPU
cores).

9.1. The direct and adjoint techniques of sensitivity analysis

Two methods of numerical calculation based sensitivity analysis are common: direct compu-
ting or computing with the application of adjoint variables. Solution of the equation is based
on the finite element technique (linear flexibility statical calculation) and as the fundamental
structural response, the optimality condition for displacement is considered. Nevertheless, the
procedure presented here can be generalized for other tasks, which can be traced
back/originated in the solution of system of linear equations.

9.1.1.  Direct sensitivity calculation

The simulation of a linear static finite element is equivalent to the solution of the following
system of linear equations, where K is the stiffness matrix of the system (a quadratic symme-
trical matrix, its order equaling the degree of freedom of the examined problem — for further
details see Finite Element Analysis subject), u is the displacement vector of the nodes and f is
the right-side vector computable from stresses:

Ku=f 9.2)
In direct sensitivity calculation this base equation is derived by the design variables (X)

of

oK
ax >

= (9.3)

Ju
u+Ka—X—

which after reordering gives the following relationship for displacement sensitivities:

du of JK
& = & - &ll . (94)

Note, that this is a similar equation to the one which was solved in the structural analysis
problem, only the right side is different. This equation has to be solved for all design va-
riables, which might result in a long computation time in case of multiple design variables.

9.1.2.  Adjoint method

The optimality condition can be simply identified from the fundamental result of the structural
analysis (in practice q is frequently a very simple vector, e.g. almost all but one elements
equals zero, non-zero on that node or element where we are interested in the dislocation or
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stress-sensitivity, and in most cases is independent from the design variables, therefore its
partial derivatives with respect to the design variables is zero)

g=q'u (9.5)
Thus, its sensitivity can be easily concluded from differentiating the above equation:

dg _ aqT rou _ aqTl Tv—1[0f 0K ]
aX_aXu+q ax_axu+qK ax  ax U (©.6)

With the calculated displacement sensitivities we can quickly define sensitivities of even large
number of optimality conditions

If we have a large number of design variables it is recommended to introduce adjoint va-
riables (a) according to the following equation:

Ka=q, 9.7)

then after a short deduction the following relationship is gained for defining the sensitivity of
an optimality condition using adjoint variables:

d aq” du _ aqT du _ aqT of 9K

6_)i:aiXu+qT6_X=6iXu+aTK6_X=6iXu+aT[B_X_6_Xu . (98)
Contrary to the direct method, the number of equation systems to be solved equal the number
of optimality conditions, and after solving a system of equations the sensitivity of the optimal-
ity conditions for all design variables can be obtained using the above equation.
Comparing the two methods, it can be stated that for size and contour optimization problems
the direct method is preferred, as the number of design variables is relatively small (e.g. in the
range of 5 to 50), but the number of optimality conditions can be large. If we consider a prob-
lem of 10 cases of stress with 100,000 elements, where for all elements of the structure a ten-
sion criterion is given, then this results in 1,000,000 optimality conditions. If the problem can
be formulated with a small number of conditions, then the method of adjoint variables can
also be used.
When a topological optimization problem has to be solved with 1-3 design variables per ele-
ment, thus resulting in 10,000-10,000,000 design variables for the optimization then almost
exclusively the adjoint method is used.

9.2. Sensitivity analysis of crank arm— main steps

In this subchapter a component’s sensitivity analysis is performed in order to identify which
size variable of the potential design variables have the largest impact on the objective function
and on the optimality condition. For the analysis any parametric 3D-design framework is ca-
pable, which has a built in linear flexibility finite element module (most of the mid-range and
high-end CAE systems are such, this being the reason of the selection of this task for demon-
stration). The following problem is presented by using SolidWorks.

Step 1.: 3D parametric geometry development of the component or composition

Here we don’t go through the geometrical design steps as it is relatively simple to develop the
examined geometry, and the actual steps depend on the used CAD system (and the back-
ground is supported by another educational material). It is important to note nevertheless that
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design variables (at least in the first approach) can be selected from the CAD geometry para-
meters, therefore the development of the geometry (the form feature tree) is very important.
The very same physical body can be created with different form feature trees (different order
of features), and not all of these are applicable for sensitivity analyses and optimization. There
is no generally valid principle for choosing the most proper feature tree, but maintaining a few
rules and having adequate experience can aid the choice (unfortunately it is not true that the
feature tree used in manufacturing is eligible here, but a tree containing relatively few features
can be favorable). It is recommended to consider in advance (at least roughly) which design
variables to use and give the initial sizes explicitly. When building the form features the drafts
should be fully determined (some frameworks allow for under-determined drafts) since alter-
nations can be better handled this way.

The sensitivity analysis is demonstrated on the example of a crank arm (Figure 9.1 left side),
which is a component of sub-assembly (Figure 9.1 right side).

Figure 9.1.: Crank arm and its installation environment

The optimization problem is volume minimization under displacement and Mises-yield crite-
rion optimality conditions. Design parameters are the material characteristics (usual steel cha-
racteristics are enumerated), the connector sizes, but beside these still many other sizes can be
found on the component (Figure 9.2).
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Figure 9.2.: Crank arm and driveshaft size grid

Step 2. Development of a structural analysis model

In the present problem, a linear flexibility statical analysis is performed considering small
displacements. The crank arm and the driveshaft are considered as a unit. In our model the
arm is fixed to the shaft’s axle by rigid coupling, on the driveshaft we assume 1000N of un-

Figure 9.3.: Boundary condition applied at the connecting rod’s structural analysis
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For the finite element grid an automatic grid generation technique was used utilising second
order tetrahedron elements, which is also recommended for evaluation of stress type condi-
tions (if only displacement-type optimality conditions are given, then linear elements can be
considered).

The evaluation of the objective function can be realised by a CAD program (in this case
151,88 g), however, for the evaluation of the tension optimality conditions a finite element
calculation is necessary, the results of which are shown on Figure 9.4. It is visible that the
maximum of tension is at the stem of the hub (110 MPa). In case of a tension optimization
condition special attention has to be paid that the necessary level of accuracy in stress calcula-
tion is maintained, since the calculation is based on these values. In such cases a convergence
analysis should be performed by further refining the finite element grid. In this case it is suffi-
cient to perform a local grid refining in the high tension zone. It can be seen also in this case
that the maximal von Mises tensile stress arising in the component grew up to 136 MPa and
on the surfaces containing the critical rounding the maximal value grew to 123 MPa. It can be
therefore stated that the precise structural analysis model’s development is inevitable when
preparing for a sensitivity analysis.
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Figure 9.4.: Tensions arising in the crank arm- initial model
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Figure 9.5.: Tensions arising in the crank arm — refined model
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Step 3. Selection of design variables

Based on the results the designer formulates an idea which sizes to change on the component
in order to save on material requirements while maintaining the required carrying or stress
capacity. To avoid too much calculations 4 size variables were defined (Figure 9.6.): width of
connecting rod (initial size: 42mm), radius of rounding at alleviation (initial size 2.5mm),
considered to be identical on both sides, and the stub size remaining at the edge of alleviation
(initial size: 8mm).

Table 9.1: The design variables and their initial values

No. of design Varying size Initial
variable value[mm]
DV 1. Width of connecting rod 42
DV 2. Radius of rounding at alleviation R3
DV 3. Depth of alleviations 2,5
DV 4. Stub size remaining at the edge 8
of alleviation
o '-"'."'p'!'f-f"“f_ff?

=

—LV2s gy

Figure 9.6.: The selected design variables

The sensitivity analysis of the objective function and the optimality criterions (maximal Mises
stress on the surface containing the critical rounding) was performed for all four design va-
riables with the presented finite difference technique.

Before turning our attention to the actual problem’s results, let’s consider some general re-
marks helping us in the solution.

It is always advisable to assess if the achieved sensitivity results are of usable accuracy, oth-
erwise no decisions can be based on these. Most leading CAE systems, directly or indirectly
have such a tool, which help defining sensitivity values. For example, in Pro/Engineer there is
a direct option for defining and displaying sensitivity values on a 2D-chart. On the other hand,
in SolidWorks a so called ,,design study” can be defined to calculate sensitivity the easiest
way, design variables can be easily given, the objective function and the optimality criterion
is done in the geometrical model as sensor.

In solving the task the latter software was used to demonstrate the impact of the respective Ax
perturbation values (a separate design study was defined for all perturbation values).
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Results can be simply transferred to Excel, where finite differences were evaluated and the
sensitivity values were displayed.

It is especially recommended to pay attention in the sensitivity calculation of stress type opti-
mization criterion. This on one hand is the most sensitive to calculation error; on the other
hand the maximal tensile stress arising in the structure can sometimes give misleading optim-
al results. This can be seen in our example (intentionally) where the maximum tension is
shown in the environment of an existing, but non-modeled rounding. The value of this ,,max-
imum” does not give reference on the structure there it is not recommended to use in the op-
timization. In these cases rather choose a surface where the maximum tension is a characteriz-
ing information (in mainstream CAE systems it is allowed to deviate from only choosing ten-
sion arising in the whole structure). It is more favorable if we want to limit the maximum dis-
placement, its accuracy can more easily be guaranteed. An even more favorable situation if
we evaluate a condition or an objective function coupled with some geometrical parameter
(for example, in the case of volume as objective function no structural analysis is necessary),
in this case the sensitivity values can be gained with high precision and independently from
the applied discretization.

After these remarks, let’s return to the presentation of the problem and the conclusions. For
determining the sensitivity values not the direct size values of the geometrical variable were
considered as design variables but their values divided with their base value, thus normalising
the variables. This technique is especially preferential when there are differences in magni-
tudes between the variables. In determining sensitivities the value of Ax was chosen to be
10%, 1% and 0.5% respectively.

1st design variable 2nd design variable
0,54 QS?’SS 7 0,00124
0,535 \ 0.00122 0,00122
0,53 x 0,52585 00012
0,525 0,52701 ' \L&,
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0,515 . . .|| o,00116 . . .
1 2 3 1 2 3
3rd design variable . .
& 4th design variable
-0,108450 . . ' 0,060
0,108451 1 2 3 0,06934 °
0,108452 0,0693 200938
- 010845 4 10845 /
-0,108453 _A'ﬁ 0,0692 /
-0,108454 0,0691 0,06913
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-0,108455 N 0,069 . . .
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Figure 9.7.: Determination of the sensitivity of the objective function
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The determination of the sensitivity of the objective function is relatively easy, and it can be
seen (Figure 9.7), that its accuracy hardly depends on the chosen Ax value. The largest impact
on volume comes from the first design variable, the width of the crank arm, the smallest im-
pact from the second design variable (radius of rounding). If for example a design variable is
chosen which is not connected to the geometry (e.g. the material’s modulus of elasticity), then
the objective function’s sensitivity will be zero.

The reliable determination of sensitivity for stress type optimality conditions is a rather more
complex problem. Using an automatic grid generator does not guarantee the identical location
of nodes used for the finite element calculation, neither that the structure of the grid in the
locality of the analysis remains the same, when we slightly change the geometry and re-grid
the whole body. Thus, although the first and third design variable allowed for an easy conver-
gence, but in the second and fourth variable’s case an additional smaller (0.1%) point was
necessary (Figure 9.8.Figure 9.8.).

Stress sensitivities depending on the perturbation
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=4—1st design variable =ll=2nd design variable
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Figure 9.8.: Determination of stress sensitivities

These results, compared with the objective function’s sensitivity allow us to draw the conclu-
sion that although the second design variable has the least impact on the objective function
but it still has the most significant role in determining maximum tensile stress.

It can be concluded furthermore that changes in all design variables have an impact either on
the objective function or on the stress optimality criterion, but if the number of variables
would still had to be reduced, then the fourth variable could be omitted, as its sensitivity val-
ues are relatively small.
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From the engineer’s aspect the maximal deformation of a structure can be important, therefore
the results for maximal displacement sensitivity calculations are presented (Figure 9.9.) for
the sake of completeness. It is well visible from the chart that displacement sensitivity con-
verges more easily than that of tensile stress, thus its determination is easier. According to our
expectations, changing the radius of rounding as the second design variable does not have
significant impact on maximal displacement.

Displacement sensitivities depending on the perturbation
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Figure 9.9.: Determination of displacement sensitivity

Summarising the results, in this subchapter we highlighted the importance and applications of
sensitivity analysis. We made an overview of the generally applicable finite difference tech-
nique, and introduced the fundamental equations and applications of direct and adjoint va-
riables methods. An actual problem was used to demonstrate the method of determining sensi-
tivity values highlighting when and which values can cause numerical stability problems. We
showed how to test convergence to ensure the accuracy of sensitivity values and what type of
conclusions can be drawn on design variables in such calculations.

9.3. Questions

1. Which areas of applications were mentioned for sensitivity analysis in solving engineer-
ing problems?

How is finite difference sensitivity calculation technique defined?

How does step size influence the precision of finite difference sensitivity calculation?
When should direct and when should adjoint sensitivity calculation be rather used?

Which are the main steps of sensitivity analysis?

kv
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10. SHAPE OPTIMIZATION. GEOMETRIC PARAMETERS AND
THEIR IMPACT ON THE OPTIMUM

During shape optimization the data set describing the initial structure is split into two parts:
one is a set of design variables, the other is a set of design parameters. During shape optimiza-
tion the design variables should be selected from the descriptive geometry subset. At the ap-
plication of parametric 3D CAE systems, the data set describing the geometry consist of the
dimensions and order of features, and the definied sketches and specified dimensions and
geometric constraints (perpendicular, tangential, pressure, etc...). An examined part can be
described by a variety of feature sequence; they will be called geometric representations of
the part.

10.1.  The effect of the geometry description on the optimization model - a case study
To illustrate the differences based on the variety of describing geometry during optimization,

a simple example can be presented: Figure 10.1. shows a rectangular plate with a hole and it’s
dimenions.

Figure 10.1.: Rectangular plate with a hole - CAD model

Even in the case of this very simple geometry we have multiple opportunities to develop the
feature-tree. In the most simple case in which we create the body by one extrude feature from
single sketch, containing a rectangle and a circle with given dimensions.

In case the diameter of the hole is increased, the solid geometry disappears when diameter
reaching the 60 mms and CAE system is unable to create the body using this simple extrude
feature (Figure 10.2. and 1_feature _regen hiba.avi).
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Figure 10.2.: The collapse of the geometry because of the contour intersects

The geometry may also be created by using two features: starting with extraction the rectan-
gular and then drill a hole into (Figure 10.3.). When increasing the size of the drill hole by
reaching 60 mm the hole disappears, because the geometric modeler can’t construct the cut
feature (Figure 10.4. and 2_feature geom .avi).

If we further increase the diameter, the tested CAD system has been able to build up the geo-
metry (Figure 10.5.), but the surface topology of the constructed geometry is different from
the initial, which is not recommended in shape optimization. In this case the number of sur-
faces increased by one. The attached animation (3_FEM changes in boundary conditions.avi)
shows, that when on the variable surface finite element boundary condition is given, the FEM
modeling in general cannot properly handle the problem.

Therefore, when designing the geometry of the following should be kept in mind:
e the correct structure of the feature tree

e the correct choice of design variables and variation limits
e it should be checked that the structure geometry can be re-build in all of the search
range and the surface topology would not change

In spite of the difficulties outlined the advantage of the parametric shape optimization is that
parametric surfaces can be easily produced and that the method is easily integrated with CAD
systems, as well as the optimized geometry immediately is generated in the usual CAE sys-
tem.
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Figurel0.3.: The structure of the rectangular with a hole based on two shape features

Figurel0.4.: The cutout shape feature causes an error, the hole disappears
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k,

Figurel0.5.: Regenerated geometry with the change of the surface number

10.2.  Questions:

1. Give examples how the shape feature sequence used in the construction of the body
impacts the determination of the optimization range!

2. What kind of problems can cause the changes in topology geometry during reconstruction
of the finite element model?

3. Why is it advantages a two-way associative data link between a CAD system and a
structural analysis software?

4. What are the most well-known CAE systems, which have both a structural analysis and
an optimization module?
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11. TOPOLOGY OPTIMIZATION

This chapter shows the place and role of topology optimization methods in the design process,
presents the basically different types of methods and demonstrates their benefits and draw-
backs. The steps of problem solving will be demonstrated on a simple problem.

11.1.  Place of topology optimization in the design process

In a very early stage of the designing we must decide the layout of the designed object for the
given operating conditions. In this stage there is possible to achieve great profit on the base of
low cost; later on, every small change implies great investment.

—design
changes

- cost of
changes

Developing time

Figure 11.1. Topology optimization can result cost saving in the conceptional phase of the design

On one hand, having a very complicated designing problem, it is worse to recline on the em-
piric and intuition as in such a case the problem is hard to formalize. On the other hand, the
problem can be very new and we are staying there without any specific knowledge about the
task, it is worse to search the main effects and we are looking systematically after the best
solution. In the case a layout is chosen, we are restricted in the goodness of reachable im-
provements so we need such a procedure, which supports such a serious decision. The only
information about the design is the loading situation, the mathematic model describing the
physical behaviour and the connection to the environment. We have no information about the
topology of the body at all: how many ribs are needed to enforce the structure o in the con-
trary how many lightening hole and where we need. The ambition of the topology optimiza-
tion is to decide which part of the given space should be occupied by our design optimally in
a specified view. Nevertheless, the result is rough so it should be further refine having other
standpoint, connectivity model and conditions applying in a following size and /or shape op-
timization loop. Choosing or constructing a topology optimization method the first focus is
the characteristics of the problem itself: what the objective(s) is/are; the second one is the way
of parameterization to follow the topological changes.

As the evaluation of the solutions follows by solving the physical model through discretiza-
tion it is important how the parametric representation of design connects to the physical one’s.
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Those methods which use a mesh on the changing design, have difficulties as the topology
changes. For topology optimization it is more suitable to model the geometry on an implicit
way and perform the structural analysis on a fixed, initially given domain. These methods can
adapt to the topological changes and there is no need for remeshing the changed body.

11.2.  Benchmark problems for testing the algorithms

Mitchell laid down the theoretical base of topology optimization by giving optimality criteria
for light structures. Later, in the 70’ths with Rozvanyi and Prager he extended the theory gen-
erally and based the examination of continuous structures. These results serve for comparison
to the different topology optimization methods [11.1].
The solution of the here demonstrated examples gilt for one load case, with elastic behaviour.
The results for weight minimization are valid for both stress and compliance constrain as a
relation exist between the optimal weight Wy the allowable stress oy and the optimal weight
W for a given compliance (11.1)
_ 98 2
We = EC W (11.1)
p is the specific weight, E the elastic modulus. The relation between the optimal weight and
the length of the structure can be given with dimensionless data W and L (fig. Figure 11.3.),
where /4 is the height of the beam and P is the load.
w=2tnp==L (11.2)
Php h
Mitchell beam — it is fixed in one end and loaded on the free one. The analytical results can
be seen on Figure 11.2.

1

Figure 11.2. Analitical solution of the Mitchell beam

MBB beam

The problem was originally formulated by the air company of Messerschmidt-Bshlkow-
Blohm. In the literature the compliance minimization of the simply supported beam is called
MBB problem (Figure 11.3.)
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Figure 11.3. Analytical solution of MBB structure
11.3.  Methods of topology optimization

In the last decades many topology optimization procedures were developed as the homogeni-
zation method, the material distribution method SIMP (Solid Isotropic Microstructure with
Penalty), evolutionary techniques (ESO = Evolutionary Structural Optimization), reverse
adaptivity, the bubble method, the level set method (LSM), method of topological derivatives
and others. The most effective and simple is the SIMP method to solve the basic problem of
compliance minimization so it is widely used in the commercial programs and for this reason
it will be shown in more detail. Further extension and application can be found in [11.15].

Topology optimization methods can be sorted in three groups:

e methods based on mathematic background which are suitable for global criteria as
compliance or volume

o homogenization method
o SIMP

o level set method

o phase field method

e heuristic methods which stand for homogenization with removing small amount of
material from the design space where the governing criteria e.g. stress is low.
o soft kill (SK) or a hard kill (HK) evolution methods (ESO, AESO,

BESO, XESO)
o reverse adaptivity
o metamorphic development

e mixed method with combining topology and shape optimization
o bubble method,
o isoline method.
In the following sections the basic characteristics of the above methods will be shown.
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11.4. Homogenization method [11.2]

By the homogenization method the body is treated to be from a porous material and we are
looking for optimal distribution of microscale voids which shape is assumed to be rectangular
in a given domain. Applying finite element method, this domain is divided in N finite element
and design variables are the size and direction of the voids in each of these elements (Figure
11.4).

fe— 11—

Figure 11.4. Design variables in the case of homogenization method

Rectangular holes are chosen because they can realize the complete void (@ = b = 1) and solid
(a = b = 0) as well as generalized porous medium (0 < a < I, 0 < b < I). Having the vari-
ables a and b inside of the intervals, the real structure must be porous or inhomogeneous den-
sity which is hardly to carry out. Additionally, in this case we have 3 design variable pro ele-
ments resulting a very big optimization problem; it can be slightly reduced for example by
applying square voids. However, it was the first method applying fix domain for structural
analysis and this main idea was further developed by the SIMP method.

11.5. The SIMP method [11.3]

The SIMP method is the most popular topology optimization method due its simplicity. Solv-
ing form finding problems of mechanical engineering, the optimization criteria is mostly the
stiffness of a part, for one or more load case constraining the volume. The achieved proposal
must be interpreted taking manufacturing viewpoints into account. The reformulated geome-
try should be further examined refining the loading environment, or other conditions can be
considered.

The matter of the method is to search the optimal topology of the structural part as material
distribution in a given design domain divided into N elements. The design variables are the
fictitious p, relative element density, (e = I, 2, - - -, N). The element e is solid, if p, = 1, and
void, if p, = 0. Avoiding the computational difficulty of the non-continuous description, in
place of discrete values {0, 1} we use continuous design variable 0 <p, <1, so

E. =0, E, (11.3)
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where p is the penalty power penalizing intermediate densities (usually should be 3 to 5), Ey is
the Young modulus, that means we interpolate with p.” between 0 and E,.

Compliance minimization
The topology optimization problem can be given as follows:

we are looking for p = {p1, p2, - -, pn}
min : C = f iy,

subject to

Yei1peve SV,

and 0 <pmin S peS 1 (114)

where displacement u# depends on the vector of design variables p, f is the vector of outer
force, and u is the solution of

K(p)u=f (11.5)

where K is the global stiffness matrix, composed from the element stiffness matrices which
depend on design variable pe threw the above introduced way. V" is the prescribed volume, ve
is the element volume. The lower limit for density pmin was introduced to avoid singularity.
Index k denotes the degrees of freedom where the outer load acts.

As the work of the outer load is equal to the energy stored in the deformed body, the objective
function can be given as follows:

min € =uKu, (11.6)

that is our problem is to minimize the strain energy.

Introducing the Lagrange function the necessary condition of optimality
pp ()P Ef e (W (W) = A (11.7)

which expresses that the strain energy density-like left-hand side term is constant and equal to
A for all intermediate densities. This is thus a condition that is similar to the fully stressed
design condition in plastic design. As we expect areas with high energy to be too low on stift-
ness we devise the following fix-point type update scheme for the density [3]:

max{(l - C)pKr pmin}f iprBn =< max{(l - C)pl{r pmin}
Pr+1 = min{(1+ ¢)pg, 1}, if min{(1 + ¢)px, 1} < PKBQ (11.8)
px By else

Here px denotes the value of the density variable at iteration step K, and Bkis given by
the expression

Bg = AI_(lpp(x)p_lEinklsij(ul()gkl(ul()» (11.9)

where ux is the displacement field at at the iteration step K, determined from the equilibrium
equation and dependent on pk. Note that a (local) optimum is reached if Bx = 1. The update
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scheme (11.8) adds material to areas with a specific strain energy that is higher than A (that is,
when Bk > 1) and removes it if the energy is below this value; this only takes place if the up-
date does not violate the bounds on p. One can see that A is proportional (by a factor p) to the
average strain energy density of the part of the structure that is given by intermediate values
of the density. The variable # in (11.8) is a tuning parameter and ¢ a move limit. Both # and ¢
controls the changes that can happen at each iteration step and they can be made adjustable
for efficiency of the method. Note that the update px+; depends on the present value of the
Lagrange multiplier A, and thus A should be adjusted in an inner iteration loop in order to
satisfy the active volume constraint. It is readily seen that the volume of the updated values of
the densities is a continuous and decreasing function of the multiplier A. Moreover, the vol-
ume is strictly decreasing in the interesting intervals, where the bounds on the densities are
not active in all points (elements of a FEM discretization). This means that we can uniquely
determine the value of A, using a bisection method or a Newton method. The values of # and
¢ are chosen by experiment, in order to obtain a suitable rapid and stable convergence of the
iteration scheme. A typical useful value of # and ¢ is 0.5 and 0.2, respectively.

The type of algorithm described above has been used to great effect in a large number of
structural topology design studies and is well established as an effective method for solving
large scale problems. The effectiveness of the algorithm comes from the fact that each design
variable is updated independently of the update of the other design variables, except for the
rescaling that has to take place for satisfying the volume constraint. The algorithm can be
generalized to quite a number of structural optimization settings, but it is not always straight-
forward. For cases where for example constraints of a non-structural nature should be consid-
ered (e.g., representing geometry considerations), when non-self-adjoint problems are consid-
ered or where physical intuition is limited, the use of a mathematical programming method
can be a more direct way to obtain results. Typically, this will be computationally more
costly, but a careful choice of algorithm can make this approach as efficient as the optimality
criteria method.

This optimality criteria method is very effective and can be extended to another problem for-
mulation; it needs few programming effort in case of having a finite element code. In those
cases where the application of the optimality criteria is not possible, we can use mathematical
programming method.

The prescribed volume V* can have predominant effect as it can be seen on Figure 11.5 so the
designer must be carefully decide by choosing this parameter.
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)

P

e)

Figure 11.5. Effect of prescribed volume fraction b) 80%; c) 60%; d) 40%; e) 20%

Ensuring convergence with mesh refinement
The basic algorithm does not ensure a unique solution with mesh refinement (Figure 11.6).
There is three main, principally different techniques to ensure the convergence in case of
mesh refinement:

e control of perimeter or prescribing minimal member size

o reduction of parameter space (coarser mesh on design space)

o filtering methods (sensitivity or density filtering).

Having greater domain with intermediate density can be avoided effectively applying the
simple p penalty parameter. It is very useful because of interpreting a solution with intermedi-
ate density is not easy in every case (in some case we can suppose a porous, or thinner or

weaker material).
The method can result a checker board like pattern, this has also very few connection to real

structure. For solving both problems we can apply projection methods and sensitivity filter-
ing.

www.tankonyvtar.hu © Csilla Erd6ésné Sélley, BME




Topology optimization 107

c)

Figure 11.7. Checker board like solution for 400 and 6400 elements

Naturally, applying more than one load case changes the characteristic of the solution (Figure
11.8). Figure c¢) and d) shows the optimized topologies for all loads in one load case. In Figure
e) and f) we can observe the optimized topologies for multiple loading cases. It is seen that
single load problems result in instable structures based on square frames whereas multi load
case problems results in stable structures based on triangular frames.
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Figure 11.8. Optimum for one and for multiple load cases

The problem solving sequence with SIMP method is as here follows:

e define the initial design domain, the boundary value problem, with homogeneous ma-
terial distribution,

e compute the displacements and strains for the actual design density with the finite
element method,

e compute the compliance for the actual design,

e in case of having no significant changes or achieving the optimum criteria stop else

e compute the new material distribution due to equations (11.7) and (11.8) (and with an
inner loop the value of 4 Lagrange multiplicator due to the volume constraint),

e repeat the procedure from the second step.

In the case applying mathematical programming method to compute the optimum, we need
also the sensitivities of objective function and optimization constraints. Writing the problem
in discrete form after (11.3) and (11.4), the sensitivities can be easily calculated with the ad-
joint method for the compliance problem as in this case the adjoint variable is identical with
the displacement so

2 = —ppl " uKu (11.10)
Pe

The sensitivity does not depend directly on the other elements, only implicit way through the
displacements and it can be easily computed. As the sensitivity takes negative values, the in-
tuition as adding material will decrease the compliance and increase the stiffness. Having a
fine design, we get high number of design variables (one for each element) which can be han-
dled with Method of Moving Asymptotes (MMA). The algorithm and programming effort is
similar to the previously demonstrated optimum criteria method. The utmost time cosuming
part of the calculation is the structural analysis.

11.6.  Level set methods(LSM) [11.3]

The fast marching method and the level set method are numerical techniques which follows
the change of an interface coupling it to a level set function. In level set-based structural op-
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timization methods, complex shape and topological changes can be handled and the obtained
optimal structures are free from greyscales, since the structural boundaries are represented as
the iso-surface of the level set function. These relatively new structural optimization methods
overcome the problems of checkerboard patterns and greyscales. The interface can have
unsmooth shape with edges and corners, its topology can be divided or rejoined without hav-
ing computational problems because the level set function can follow this changes on a
smooth way.

Rather than follow the interface itself, the Fast Marching Method makes use of stationary ap-
proach to the problem. Let us lay a grid laid down on top of the problem. A time like function
T(x,y) is ordered to the moving interface: at each grid point 7, 7(x,y) gives the time at which
the front crosses the point (x,y).

As an example by Sethian et al., suppose the initial disturbance is a circle propagating out-
wards. The original region (the blue one on the left below) propagates outwards, crossing over
each of the timing spots. The function 7(x,y) gives a cone-shaped surface, which is shown on
the right. This surface intersects the xy plane exactly where the curve is initially. At any
height 7T the surface gives the set of points reached at time 7. The surface on the right below is
called the arrival time surface, because it gives the arrival time.

= Y

o

Figure 11.9. Interpretation of the fast marching method

Beneficially, the numerical calculations are made on a fix grid (Eulerian approximation).

The level set function is more general: the interface is ordered to a signed distance function
and the initial shape is ordered to the zero level. The initial value problem for the moving of
the level set function corresponds to the Hamilton-Jacobi equation.

In the following example a bending plate is given on Figure 11.10. The red arrow denotes the
load, green squares the fixation. The design boundary is drawn with broken line. Stress distri-
bution is shown on Figure 11.11.
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Figure 11.10. Problem definition Figure 11.11. Stress distribution of start design

A hole is inserted on the low stressed zone and the stresses are recalculated; the hole is

enlarged in the direction to the low stressed zone.
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Figure 11.12. Operation of level set method
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11.7.  Evolutionary Structural Optimization (ESO) [11.7][11.8][11.9]

The evolutionary methods based on engineering intuition: they extract domains not participat-
ing in the load transfer and add material to strengthen the weak places (bidirectional meth-
ods). Initial finite element model for the Hard-Kill (HK) Method can be a structured mesh of
a given part; the elimination of elements follows with the reduction to near zero of its material
properties. Benefit of the method is there is no need for remeshing and every kind of problem
can be solved even for more load cases. Its’ drawback is the zigzagging mesh and if the step-
width is chosen inappropriately, the supported or the loaded surface can be vanished. Need
for mesh refinement is also a problematic task. Metamophic development is a bidirectional
version of evolutionary methods, which adapts the amount of added/extracted material dy-
namically to the structural responses in every iteration steps, accelerating the convergence.

11.8.  Nonprofit software tools to obtain the optimal topology

In the internet there are available some free software to demonstrate how to estimate the op-
timal layout of a design using topology optimization techniques. In this section the capability
and problem solving sequence of TOPOPT and TOPOSTRUCT programs will be demon-
strated. Both of them search the optimal material distribution (SIMP method) on fixed mesh
of an initially given brick shaped domain.

Steps of compliance minimization:
e Choosing between 2D or 3D
e giving the size and resolution of design space
e Prescription of supports and loads
e Volume fraction up 0.1 to 0.2
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Maximal iteration limit and penalty parameter
solving the optimization

evaluation the results

adapt and forward the results.

11.8.1. TOPOPT

TOPOPT is developed on the Technical University of Denmark, in a cooperation of Faculty
of Mathematics and Mechanical Engineering for supporting the theoretical developments and
solving practical problems. The preprocessing the optimization problem takes place in a Java
applet, the calculation runs on a remote computer. Results appear as animated gif on the local
machine.

Figure 11.13. Definition of the optimization problem with TOPOPT

In the case program for solving 2 dimensional compliance problem design domain can be
given with dragging the size of a light blue rectangle on the black background after its selec-
tion between 100x100 units (Figure 11.14. ). Prescribing holes for occupancy of connected
components or is possible thru selecting, adapting and dragging white rectangles while con-
servation of supported and/or loaded surfaces can be ensured using darkblue rectangles in

arbitrary number.
> T

|

Figure 11.14. Prescribing tools for the boundary value problem

Symmetry should be utilized for achieving finer results. Mechanical problem can be also
given by choosing the supports and loads in appropriate direction and applying them on the
body thru dragging.
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Multiply load case can also be applied up to 3 loadcases.

Figure 11.15. Topology optimization for more load cases 1.

On the top of Figure 11.15. the two loads act simultaneously, on the bottom apart from each
other. The difference of the solution can be observed on the right hand side.

Effect of additional load cases can be followed on Figure 11.16.
Volume fraction (up 0 to 1) and penalty parameter (between 1 and 3) can be adjusted with the
slides. Limits of the 2 dimensional programs are

e 1000 design variables
e 3 ]oad cases
e 100 iteration

Mechanism design can be made on a similar way with another program. Compliance design
can be performed for 3D problem; in that case the work can be saved and results can be trans-
ferred to a CAD software in .stl format.

11.8.2. TOPOSTRUCT

Topostruct program was developed by Panagiotis Michalatos and Sawako Kaijima in 2008 for
getting acquainted with topology optimization. The model can be given in 2 or 3 dimension,
the design space is rectangular or brick.
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Figure 11.17. Topostruct program

Additional facility to TOPOPT, that the shape of the selected group of nodes for boundary
value definition can be sphere or cylinder with axis in arbitrary direction. Model and results of
structural analysis can be visually controlled and animated. The optimal result can be manipu-
lated: it can be smoothed and elements can be eliminated under a given density level. Multi-
ply loadcase can not be examined.

More detail can be found in the user manual. Operation can be understood in 2 dimensional
¢és 3 dimensional examples.

11.9. Summary

Topology optimization searches the optimal layout for a global characteristic as compliance
or natural frequency of a structural part, for a given material utilization and considering manu-
facturing constraints as extrusion, symmetry, draw direction by casting. The method should
be able to find the optimal solution independent from the initial design guess.
An intuitive way for finding optimal layout is change the design due to engineering decision
(cutting out low stressed part and strengthen the high stressed zones). These methods are
called evolutionary methods. Such methods highly depend on the choice of parameters, so
they are not stable and sometimes delivers unusable solution. The continuous topological
changes should rather be followed with methods searching the optimal shape on an extended
fix domain. The design variables able to follow these changes continuously could be
e geometrical parameters bonded to microstructure as in the homogenization method
e material like parameter as in the SIMP method
e bonded to a time like parameter after Euler formula, so the moving of the surface will
be given in the initial coordinates as in the level set method and in the phase field
method.
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Numerical problem could arise and should be avoided as

numerical instability

dependency from mesh

dependency from initial design

checkerboard like solution

greyscales or porous domains without any practical interpretation
solution with manufacturing difficulties or with high manufacturing costs.

Solution of the above mentioned problem can be also multitude:

geometrical limit as perimeter control or minimal member size control

filtering techniques as sensitivity filtering

using different mesh for design and analysis

using manufacturing constraints as draw direction, extrusion direction, circular or ax-
ial symmetry

further stabilizing conditions as giving a fictive limit surface energy or entropy like
condition

Specialists are continuously searching the most suitable answers to all of these questions and
extending the method for solving further type of problems. Nevertheless, results of a topology
optimization should not interpreted directly as a design for manufacturing, interpretation
leaves a task of design engineer, especially having a complex design problem. The optimal
solution got for global condition should be further refined by an additional shape optimization
step for local conditions as stress.
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11.11. Questions

1. Which topology optimization methods can be used for more type of problems or for mul-
tidisciplinary problems?

2. What are benefits of the mathematical algorithms?

What designer decisions should be made before topology optimization?

4. What designer decisions should be made after topology optimization?
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